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Most of our distress begins when we imagine how different life should have been. Entrusting your
hopes to something as flimsy as your possibilities is the root of all evil. You must accept this you of
here and now; you are incapable of becoming anyone else. There’s no way you could live a so-called
rose-colored campus life to the fullest. I guarantee it, so best dig in your heels.

Tomihiko Morimi, The Tatami Galaxy
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Abstract

Planning is a hallmark of human intelligence that involves the mental simulation of futures and

their consequences in order to make a decision. Spatial navigation, scheduling, and strategy

games are all examples of ecologically relevant planning tasks. Artificial intelligence has fully

embraced the challenge of developing powerful algorithms to solve a wide array of problems in

large state spaces. Meanwhile, despite the ubiquity of sequential decision-making in naturalistic

behavior, the study of the cognitive mechanisms underlying human planning has been primarily

limited to relatively simple tasks.

In this dissertation, I will outline a framework for studying the cognitive science of complex

planning. This is founded upon a combinatorial gamewhere participants thinkmultiple steps into

the future as well as a large-scale data set consisting of millions of games. I will first show how

human gameplay can be characterized by a computational cognitive model based on heuristic

search, and how that model can provide evidence for increased planning depth with expertise.

Then, I will highlight how this task and data set can be leveraged to investigate a diverse set of

research directions, from using deep neural networks for guided model improvement to building

normative theories of meta-planning to analyzing the relationship between task performance and

engagement. Together, my work exemplifies a broad approach to understanding the algorithms

that people use to plan and reason in complex environments.
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1 | Introduction

Planning is a hallmark of human intelligence. In our everyday lives, we must constantly make de-

cisions by considering the future consequences of our actions. This is made all the more challeng-

ing by the fact that we live in a complex world, one in which various events are interconnected

throughout time and the outcomes of our sequential choices are difficult to predict.

To be more concrete, imagine a recent college graduate interested in pursuing an academic

career. First, they must deliberate between applying to graduate school right away or gathering

more research experience. Then, if they eventually decide on the former, they must choose which

programs they find appealing and which advisors they might want to work with. This decision

can be influenced by numerous factors including scientific interests, mentorship needs, institu-

tional reputation, friends and family, and location, among others. These same considerations can

be applied to all positions that they will pursue after completing their doctorate. Even then, they

must weigh the likelihood and potential benefits of a tenure-track position against alternate ca-

reer options to judge whether the payoff is worthwhile. Additionally, every step of this process

is not only subject to prospective thinking, but also influenced by prior experiences such as the

student’s relationship with their advisor or if they spent time in industry completing an intern-

ship. In sum, decisions in the real world are often complex, intertwined with other experiences

and decisions, and come with substantial uncertainty.

The goal of this chapter is to bring together perspectives, both computational and experi-

mental, from artificial intelligence and cognitive science to support a research program aimed at
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understanding the algorithms by which people think ahead in complex environments. This will

outline the literature upon which this dissertation is built as well as provide a comprehensive

background of the material required to fully contextualize each chapter. The structure of the

chapter is as follows: in Section 1.1 I will recap the methods employed in artificial intelligence to

create planning algorithms that outperform human abilities, in Section 1.2 I will cover the trajec-

tory of multi-step planning studies in both neuroscience and cognitive science that have shaped

our understanding of how people plan, and in Section 1.3 I will focus on tasks, including the

psychology of chess as a case study in human planning as well as the movement towards using

games and large-scale data sets in tandem to characterize complex behavior.

1.1 Artificial intelligence

1.1.1 Reinforcement learning

Reinforcement learning (RL) is arguably the most successful theoretical framework available for

explaining goal-directed learning and decision-making [Sutton and Barto 2018]. RL uses the

formal framework of a Markov decision process (MDP) to define how an agent interacts with and

learns from their environment (Figure 1.1). Beyond the agent and environment, there are four

main elements common to RL systems that guide the selection of an action 𝑎 in state 𝑠: (1) a policy

𝜋 , which is a relationship between states in the environment and actions that can be taken in each

state, (2) a reward signal 𝑅, which provides feedback contingent upon given events and which the

agent must maximize in the long run, (3) a value function𝑉 , which specifies what is good for the

agent in the long run, and (4) a model, which mimics the behavior of the environment and allows

the agent to make inferences about how the environment will behave. The last component is key

to planning, which can be defined as deciding on a course of action by considering possible future

situations before they are actually experienced. RL spans the spectrum from model-free methods
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that are explicitly low-level trial-and-error learners to model-based methods that make use of

simulations to engage in high-level deliberative planning. Throughout its history, RL has had a

particularly strong interaction with psychology and neuroscience, as many of these algorithms

were inspired by biological learning systems [Bengio et al. 2009]. In turn, RL has generated

computational models that can be tested with behavioral and neural data [Montague et al. 1996].

This raises the question: is all of the RL literature relevant to this dissertation? Undoubtedly,

the interplay between model-free and model-based approaches have direct correlates in psychol-

ogy and neuroscience studies of sequential decision-making [Dickinson 1985; Daw et al. 2005].

Additionally, heuristic search and deep neural networks both intersect with RL and human plan-

ning [Silver et al. 2016; Huys et al. 2012]. However, many of the most famous approaches in

RL are not directly applicable to the study of the cognitive algorithms underlying planning in

complex environments. This is primarily because such algorithms are constructed to derive an

optimal value function known as the Bellman equation:

𝑉 (𝑠) = max (𝑅(𝑠, 𝑎) + 𝛾𝑉 (𝑠′)) (1.1)

where 𝛾 is a discount factor that determines how much the agent cares about potential rewards

in the distant future, denoted by 𝑉 (𝑠′), relative to those in the immediate future, denoted by

𝑅(𝑠, 𝑎). Meanwhile, I am interested in large state space settings where approaches to solving the

Bellman equation are simply intractable. Modern RL algorithms are now explicitly designed to

address this challenge, but optimal value functions are typically not representative of how people

cognitively reason in complex tasks.

Nonetheless, there are a number of model-free and model-based RL methods that will hope-

fully serve to contextualize the experimental and modeling work that I will describe later in this

chapter. In model-free RL, an agent does not have access to a transition rule, which predicts the

next state after taking an action, and therefore learns purely by trial-and-error. These methods
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Environment

Agent

action 
at

reward 
Rt

state 
st

Rt+1

st+1
Figure 1.1: A standard agent-environment interface at time 𝑡 in a Markov decision process (MDP).
Adapted from [Sutton and Barto 2018].

implicitly approximate a value function by averaging over experienced rewards and state transi-

tions. Examples of model-free RL algorithms are dynamic programming (DP), which break down

an MDP into smaller problems to perform updates based on current value estimates [Bellman

1966], Monte Carlo methods, which average over sample returns from the environment [Rubin-

stein and Kroese 2016], and temporal-difference (TD) learning, which combines DP and Monte

Carlo methods by bootstrapping from the current estimate of the value function [Sutton 1988;

Watkins and Dayan 1992]. Among approaches to model-based RL, one subset of algorithms are

concerned with background planning, or using a model to replay or simulate experience offline

or as part of a learning rule. A model can be formally defined as a belief state over a transi-

tion rule. Planning here is not focused on the current state, but rather on gradually improving

a policy or value function that results in better tabular state-action estimates for lookup. Dyna

is one relevant example where real experience, passed back and forth between the environment

and the policy, affects the policy and value function in much the same way as simulated expe-

rience generated by the model of the environment [Sutton 1991]. In this scheme, learning and

planning are deeply integrated in the sense that they share almost all of the same machinery.

Another extension, called prioritized sweeping, works backwards from goal states to prioritize
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updates according to a measure of their urgency [Moore and Atkeson 1993]. In general, both

model-free and model-based RL methods are based on looking ahead to future events, computing

a backed-up value, and then using it as an update target for an approximate value function.

1.1.2 Heuristic search

The most important technical approach in the context of the relationship between artificial intel-

ligence and this dissertation, and the one I would like to expand on the most, is heuristic search.

Heuristic search differs from the previous descriptions of background planning and model-based

RL in that it is the classical example of decision-time planning. In decision-time planning, sim-

ulated experience is used to select an action for the current state rather than gradually improve

a policy or value function. Broadly speaking, planning algorithms in this space can search much

deeper ahead than a single step by constructing a decision tree that evaluates many actions lead-

ing to different state and reward trajectories (Figure 1.2). The size of this decision tree is expo-

nential in the number of choice points. For example, if an agent has to make a sequence of 𝑁

decisions with 𝐾 options at each step, then the total number of sequences is 𝐾𝑁 . Heuristic search

algorithms deal with this combinatorial explosion by introducing an approximate value function:

𝐻 (𝑠) =
∑︁
𝑖

𝑤𝑖 𝑓𝑖 (𝑠) (1.2)

where 𝑓𝑖 (𝑠) are features of the state and 𝑤𝑖 are feature weights. The weights are learned over

experience such that the discrepancy between 𝐻 (𝑠) and the true or optimal value of the state

𝑉 (𝑠) is minimized [Pearl 1984]. Using this approximation, an agent builds a partial decision tree

starting from the current state as the root node, eventually selecting the best action available

according to the heuristic function. There are many approaches to constructing this partial tree,

one of which is best-first search [Dechter and Pearl 1985]. In best-first search, the agent iteratively

selects a sequence of the most promising actions leading to a leaf node, expands the tree by
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Depth-first search

Search order

1 9

Breadth-first search

Search order

1 9

Figure 1.2: A decision tree implementing heuristic search. Two possible sequence of nodes used to con-
struct the tree are numbered, one for depth-first search (red) and another for breadth-first search (blue).
The search order of each sequence is shaded from dark to light in increasing order from 1 to 9.

evaluating candidate actions with 𝐻 (𝑠), and backpropagates the information to the root node.

In the history of artificial intelligence, heuristic search has been implemented in various

forms, often to play zero-sum, two-player games like tic-tac-toe, chess, and Go. In 1950, Claude

Shannon published a groundbreaking paper describing how a machine or computer could be de-

signed to play a reasonable game of chess [Shannon 1950]. His algorithmwas based on aminimax

procedure, which used an evaluation function of chess positions to select the best move for both

players. Later, TD-Gammon was developed as the first program to play backgammon at human

master level [Tesauro et al. 1995]. TD-Gammon used TD learning to compute an afterstate value

through many games of self-play, using a form of heuristic search to make its moves. Backgam-

mon has a large branching factor, and even selectively searching ahead a few steps drastically

improved action selection. Finally, the chess-playing computer that defeated reigning world
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champion Gary Kasparov, DeepBlue, made use of alpha-beta pruning to decrease the number

of nodes evaluated by its minimax algorithm [Campbell et al. 2002]. This variation on heuristic

search stops evaluating a move when at least one possibility has been found that proves the move

to be worse than a previously examined move. In this way, the algorithm returns the same move

as a standard implementation of minimax would, but prunes away branches that cannot possibly

influence the final decision to reduce the size of the search tree. Modern neural networks have

further augmented the capabilities of these search methods in combinatorial games [Silver et al.

2016], and there is a rich history investigating the psychology of chess [De Groot 2014; Chase

and Simon 1973]. These are important topics to this dissertation, and I cover both in dedicated

sections later in this chapter.

One final and highly successful example of decision-time planning is Monte Carlo tree search

(MCTS). MCTS is a rollout algorithm, meaning that it estimates action values for a given policy

by averaging the returns of many simulated trajectories that start with each possible action and

then follow a given policy [Browne et al. 2012]. More specifically, a tree is built by iteratively

employing a tree policy, which attempts to balance exploration, or searching in areas of the state

space that have not been extensively sampled yet, and exploitation, or searching in areas of the

state space that appear to be promising. A simulation is then run from the selected node, with

moves made according to some default policy, which in the simplest case is to make uniform

random moves. The search tree is then updated with a new child node as well as the result of the

simulation that is backpropagated to the root node. The most popular tree policy is an application

of themulti-armed bandit (MAB) algorithmUCB1 (Upper Confidence Bound 1) called UCT (Upper

Confidence Bound 1 applied to Trees). UCB1 assigns scores to child nodes 𝑗 using their expected

value 𝑋 𝑗 , the number of visits to the parent 𝑛 and child 𝑛 𝑗 , and an exploration bonus 𝐶𝑝 . UCT

then applies this recursively to action selection in decision trees:

𝑈𝐶𝑇 = 𝑋 𝑗 + 2𝐶𝑝

√︄
2 ln𝑛
𝑛 𝑗

. (1.3)
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The first and second terms reflect the balance between exploitation and exploration, and 𝐶𝑝 can

be adjusted for the amount of exploration that is desired. MCTS has been deeply influential in

artificial intelligence, leading the paradigm shift from chess to Go in the field [Lee et al. 2010] and

having broader applications to general game playing [Finnsson and Björnsson 2008]. However,

it is important to note that MCTS, and the majority of heuristic search methods in artificial intel-

ligence, are engineered for maximal performance rather than to be human-like in their behavior.

1.1.3 Artificial neural networks

Artificial neural networks (ANNs) are another widely used class of models that typically consist

of an architecture, which describes how different units are connected, and a learning algorithm,

which is used to learn the appropriate connection weights for the model’s parameters (Figure

1.3). ANNs themselves have a long history that I unfortunately lack the space to delve into, but

these networks have the general capacity to represent any computational process [Siegelmann

and Sontag 1995; LeCun et al. 2015]. In other words, given enough training time and data, ANNs

are nonlinear function approximators that can fit data equally well or better than any othermodel.

ANNs, however, are notoriously difficult to train to generalize across tasks, are high-dimensional

and hard to interpret by construction, and the representations and computations underlying their

behavior are typically obscure. That being said, they are increasingly becoming a common tool for

research, both within the context of artificial intelligence and in application to cognitive science.

Combining prior work onMCTSwith ANNs, a team at DeepMind developed AlphaGo in 2016,

the first artificial agent to achieve superhuman performance in Go with a series of stunning victo-

ries against world champion Lee Sedol [Silver et al. 2016]. The main innovation behind AlphaGo

is that it selected moves using a novel version of MCTS that was guided by both a policy and a

value function learned by RLwith function approximation provided by deep convolutional ANNs.

Additionally, instead of starting from random network weights, it started from weights that were

pretrained on human experts as a starting point, iterating on previous work that aimed to predict
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Figure 1.3: A fully-connected feedforward artificial neural network (ANN) with three input units, two
output units, and two hidden layers with four units each.

human moves in large Go databases [Stern et al. 2006; Clark and Storkey 2015]. Impressively,

AlphaGo was improved on to develop AlphaGo Zero, which used no human data or guidance

beyond the basic rules of the game [Silver et al. 2017], and AlphaZero, which does not even in-

corporate knowledge of Go and subsequently outperforms the world’s best programs not only in

Go, but also in chess and shogi [Silver et al. 2018]. These represent state-of-the art advances in ar-

tificial intelligence, namely those that utilize self-play reinforcement learning to create computer

agents that solve complex planning problems at a level beyond human capabilities.

Meanwhile, a related emerging field in cognitive science has leveraged the unbounded ex-

pressivity of ANNs to improve our understanding of the algorithms underlying human behavior.

Rather than training on the task itself and optimizing for performance, these ANNs are trained

to predict human behavior. Then, they are systematically investigated as an upper bound for

prediction where any generalizable aspects of the human data are captured by the network and

can be extracted for use in interpretable models. In complex tasks where large-scale data has
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been collected, relatively simple, feedforward network architectures have been pioneered to dis-

cover algorithms underlying human decision-making [Agrawal et al. 2020; Peterson et al. 2021]

and categorization [Battleday et al. 2020]. This is done by concurrently examining the devia-

tions from the neural network’s predictions and a cognitive model that is meant to be improved.

In simpler RL contexts, recurrent neural networks have been the primary architectural choice

[Dezfouli et al. 2019; Eckstein et al. 2023; Miller et al. 2023; Ji-An et al. 2023]. These come with

the tradeoff that they are more difficult to train and analyze, but have the added benefit of being

useful for more smaller, more common data sets. In conclusion, ANNs are being applied broadly

across domains, two specific instances of which are to develop better algorithms within artificial

intelligence itself and as a tool for creating better computational models of human behavior.

1.2 Multi-step planning

1.2.1 Experimental findings

Recent years have seen a surge in experimental work aimed at understanding the neural mech-

anisms of multi-step planning in the brain [Miller and Venditto 2021; Mattar and Lengyel 2022].

Here I review the literature that is most important for transitioning to studies that investigate

how humans engage in forward thinking, but a wide range of neural structures that contribute

to associative learning, food foraging, and spatial navigation have been implicated in planning as

well. A cornerstone of the empirical study of sequential decision-making was Tolman’s finding

that rats navigating in a maze use data gathered from free exploration to build a mental map

of their environment that they can subsequently use for efficient, goal-directed planning [Tol-

man 1948]. Following this, the activity of hippocampal place cells was decoded to determine

what part of space is being representing on a moment-to-moment basis. When a rat pauses at

a choice point in a maze, these representations sweep forward along the possible paths that the
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Figure 1.4: Decision trees in tasks used to study human planning, roughly sorted by state space com-
plexity. Adapted from [van Opheusden and Ma 2019].

animal can take [Johnson and Redish 2007]. Furthermore, the spatial trajectories represented

by these sweeps closely correspond to the rat’s subsequent navigational behavior [Pfeiffer and

Foster 2013]. Hippocampal neural activity has also been associated with both background and

decision-time planning [Pezzulo et al. 2019], and more recently it was determined that rats can

efficiently navigate or direct objects to arbitrary goal locations solely by activating and sustaining

appropriate hippocampal representations of remote places [Lai et al. 2023].

Perhaps the most influential study of sequential decision-making employs the two-step task,

originally in animals [Daw et al. 2005] and extended to humans [Daw et al. 2011b]. In this task,

participants make a sequence of two binary choices between states (Figure 1.4A). In the first de-

cision stage, the participant chooses between stimuli A1 and A2. On 70% of trials, choosing A1

leads to the set of B states and choosing A2 leads to the set of C states. However, on 30% of trials,

the opposite transitions occur. In the second stage, participants make another choice between
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two stimuli, which yields a monetary reward with some probability. The reward probabilities

fluctuate slowly, so participants have to constantly adapt the values they associate with the stim-

uli and adjust their decisions accordingly. Notably, this is the simplest task in which model-free

and model-based RL make different behavioral predictions. When a reward is received, a model-

based agent has the capacity to take into account whether it arrived there through a common or

rare transition, whereas a model-free learner does not. In the seminal work in which the task

was introduced, it was found that people use a mixture of model-based and model-free learning.

Additionally, this task has been utilized to demonstrate that the relative usage of each system

depends on the reliability of their respective predictions [Lee et al. 2014] or on an online cost-

benefit analysis [Kool et al. 2016], and that people’s arbitration between these systems changes

under cognitive load [Otto et al. 2013] or when they receive a dopamine precursor [Wunder-

lich et al. 2012b]. More recently, it has been argued that sophisticated model-free learning can

masquerade as model-based learning in the two-step task [Akam et al. 2015] and that more de-

tailed task instructions lead participants to make primarily model-based choices that have little

model-free influence [Feher da Silva and Hare 2020]. Moreover, further evidence for the neural

substrates of planning in animals has been found in different adaptations of the task [Miller et al.

2017; Groman et al. 2018; Akam et al. 2021].

Arbitration between model-based and model-free RL, as contextualized by the two-step task,

provides a direct link to artificial intelligence. To choose an action in a given state, a model-based

system mentally simulates the consequences of possible actions multiple steps into the future,

whereas the model-free system considers the outcome of actions taken in the same or similar

states in past experience. These dual systems have been discussed under various names and

implementations, with the most standard mapping to RL being habitual and goal-directed control

of learned behavioral patterns [Dickinson 1985; Dolan and Dayan 2013]. Themodel-based system

is slow and computationally expensive, but can determine high-value actions from any state,

including ones that the agent has never previously encountered. On the other hand, the model-
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free system is fast but needs previous experience to inform its policy. While this section has thus

far focused on model-based RL, there is a long history of findings about model-free RL in animals

and humans. These results range from the Rescorla-Wagner model of the circumstances under

which Pavlovian conditioning occurs [Rescorla 1972] to the reward prediction error hypothesis

of dopamine neuron activity delivering error signals between old and a new estimates of expected

future reward to target areas throughout the brain [Schultz et al. 1997]. One question of particular

interest in the field is how people combine information from these systems. For example, this

decision may be based on uncertainty estimates provided by both systems [Daw et al. 2005] or the

historical accuracy of their predictions [Kool et al. 2017]. A related problem is how these systems

can benefit from each other’s computations, for which a candidate framework is amortization

[Dasgupta et al. 2018], in which the agent re-uses simulated experience from the model-based

system as additional training data for the model-free system. While arbitration between dual

systems is not a focus of this dissertation, it is closely related to a topic that is, namely deciding

whether prospective planning is worthwhile in terms of time and computational resources.

1.2.2 Human planning in a computational framework

Beyond the two-step task, the study of human planning is rich and has employed an entire suite

of experimental tasks. A core challenge is that researchers can only gather data about people’s

decisions, but planning is an internal, cognitive process that is inherently not observable. Thus,

one method for inferring planning algorithms is to fit a computational model to human behav-

ior and evaluate how closely the model predicts people’s decisions. While studies in this regime

primarily rely on planning tasks of limited complexity compared to those used in artificial intel-

ligence, the more traditional approach to science comes with the advantage that behavior can be

precisely explained with process-level models.

This computational framework has led to substantial progress in understanding the algorith-

micmechanisms that people use to plan, specifically in the context of navigating and constructing
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decision trees. One idea that emerged in a series of papers was that planning can be conceptu-

alized as probabilistic inference [Botvinick and Toussaint 2012; Solway and Botvinick 2012]. In a

real-world decision task where participants had to choose between items that they had previously

ranked by desirability (Figure 1.4B), behavior was captured by noisy evidence integration, which

treats each path through the decision tree as a competitor in a bounded accumulation process [Sol-

way and Botvinick 2015]. Another study dissociated neural correlates of reward prediction errors

and state prediction errors by extending the two-step task (Figure 1.4C) to include more second-

level states and introducing third-level states that deterministically lead to reward [Gläscher et al.

2010]. In a two-player variant of the two-step task, the transitions from the first to second level

states were made by an adversarial computer agent (Figure 1.4D). This allowed for the identifi-

cation of neural correlates of the values of individual branching steps in a minimax decision tree

[Wunderlich et al. 2012a]. Human planning has also been studied in a fast-paced, dynamic en-

vironment where participants watched a triangular lattice of disks of different sizes scroll down

a touchscreen and traced the most rewarding path (Figure 1.4E). Participants received a reward

proportional to the size of all disks on that trajectory, and human behavior was found to be con-

sistent with planning several steps into the future [Snider et al. 2015]. In another goal-directed

decision-making task, participants were asked to make a sequence of multiple two-alternative

choices by which they traversed a graph (Figure 1.4F). Each transition incurred a reward which

could be either positive or negative, and the task was designed such that the optimal policy re-

quires taking large negative rewards to obtain positive future rewards. This revealed that people

plan along multiple branches in a decision tree, but eliminate unpromising branches by pruning

[Huys et al. 2012] and decompose the task into a hierarchy of subtasks [Huys et al. 2015].

To reiterate the aforementioned point that experimental studies in neuroscience as well as the

computational literature in cognitive science have primarily concerned themselves with limited

complexity tasks to study planning, the state space of these tasks range from a lower bound of 3 in

the two-step task and [Solway and Botvinick 2015] to an upper bound of 128 in [Huys et al. 2012].
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By contrast, chess has approximately 1047 states [Chinchalkar 1996] and Go has approximately

2.1·10170 states [Tromp 2016]. Simpler tasks inherently impose a ceiling for the depth of planning,

and therefore characterizing people’s planning strategies in complex environments that resemble

more naturalistic behavior remains an open problem. That being said, these results introduce

important concepts that a successful model of sequential decision-making would need to take

into account such as relying on uncertainty, integrating information from various sources, and

pruning certain courses of action.

1.2.3 Optimality and recent advances

An outstanding problem in the study of human planning that has not been directly addressed

by the studies in the previous section is how people are able to solve novel problems when their

actions have long-reaching consequences given the huge number of actions and outcomes that

could be considered. Indeed, exhaustive planning, or traversing a full decision tree, is often in-

tractable since the size of the tree grows exponentially with the number of steps that one looks

ahead. One way to frame the results covered thus far is in terms of heuristics, with researchers

proposing and testing different possible methods that people could be using to reduce the costs

associated with planning. This dependence of human planners on heuristics has been cited as far

back as Newell and Simon in one of the earliest attempts to replicate human-like intelligence in

a computer [Newell and Simon 1956; Newell et al. 1959]. In many domains, progress has been

made by analyzing optimal solutions to a problem that a cognitive system is meant to solve [Marr

2010; Anderson 2013]. Normative approaches to modeling human planning are fairly sparse, al-

though there have been a number of recent attempts. One is the plan-until-habit scheme, which

executes forward planning up to some depth and then exploits heuristic values from a habitual

system as proxies for consequences that may arise further into the future [Sezener et al. 2019].

This framework is designed to optimally trade off speed and accuracy under the assumption that

deeper planning leads to more accurate evaluations, but at the cost of slower decision-making.
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The critical value to be computed when deciding if to expand the decision tree in a certain tra-

jectory is the value of uncertainty reduction (VUR). VUR computation examines whether a new

piece of information, possibly provided by a further expansion of the tree along a trajectory, could

change the agent’s decision about what action to take and and how much extra value is expected

to be gained by that policy improvement. Formally, VUR is defined as the difference between the

amount of future rewards that are expected to be gained with the expansion of strategy 𝐴𝑖 and

without the expansion of 𝐴𝑖 :

𝑉𝑈𝑅(𝐴𝑖 |𝐹 ) = E𝜇∗
𝑖
[max

(
𝜇∗𝑖 , max

𝐴∈𝐹−𝐴𝑖

E[𝑉 (𝐴)]
)
] −max

𝐴∈𝐹
𝐸 [𝑉 (𝐴)] . (1.4)

Here, 𝐹 −𝐴𝑖 is the frontier set 𝐹 of all strategies excluding𝐴𝑖 , and 𝜇∗𝑖 is the expected mean of strat-

egy 𝐴𝑖 after the potential expansion. However, this variable is computed before expansion using

a discount factor as well as the mean and the variance of the model-free value distribution for

the last action made using𝐴𝑖 . This algorithm is close in form to arbitration between model-based

and model-free RL, and can reproduce several behavioral patterns in grid-world environments

and the [Huys et al. 2012] task, namely the effect of time pressure on the depth of planning, the

effect of reward magnitudes on the direction of planning, and the gradual shift from goal-directed

to habitual behavior during training.

A second normative approach to modeling human planning has been to cast the problem in

terms of resource rationality. Resource-rational analysis also strives towards optimality by de-

riving models of human behavior that take into account which cognitive operations are available

to people, how long they take, and how costly they are [Russell and Wefald 1991; Griffiths et al.

2015; Lieder and Griffiths 2017]. Applied to planning, the problem is formalized as a sequential

decision problem in which an agent executes a sequence of cognitive operations to construct a

decision tree [Callaway et al. 2022b]. More specifically, optimal solutions can be derived as a

function of the conceptual and technical tools for metalevel MDPs, which, in contrast to standard
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MDPs, dictate the interaction between an agent and its internal, computational environment.

This creates a metalevel question similar to the one tackled in [Sezener et al. 2019]: which states

should the agent consider to achieve the best tradeoff between the costs and benefits of planning?

The key observation underlying the resource rational model in this context is that the basic and

metalevel problems are both sequential decision problems. That is, they require the agent to

make a sequence of choices in which the outcome of each choice depends on which choices were

made previously. While the basic problem is defined by states of the world, physical actions, and

external rewards, the metalevel problem is defined by decision trees and the mental operations

that build them. Thinking about planning from this perspective enables both the identification

of the optimal strategy as the one that maximizes the expected utility of executing a plan minus

the cost of each cognitive operation required to make that plan as well as a flexible framework

for testing heuristic planning strategies. In addition, a process-tracing paradigm that external-

izes the cognitive operations underlying planning as mouse clicks was developed (Figure 1.4G)

and used to investigate the predictions of different models. This is an extension of the Mouse-

lab paradigm [Payne 1976], where participants navigate a directed graph in which each node is

associated with a reward that is only revealed when the participant selects the corresponding

node. The sequence in which participants choose to reveal rewards provides insight in the cogni-

tive process by which participants plan their actions. In a series of four experiments, participants

were found to use planning strategies that are largely consistent with optimal planning strategies,

using previously proposed heuristics when they are adaptive.

Finally, I would like to briefly mention a few recent advances in the study of human planning

that I believe are relevant to this dissertation and combine distinct elements of the work on plan-

ning I have reviewed thus far. In terms of the neural basis of planning, it has been demonstrated

that people use prospective information to guide current choices, and located the representation

of prospective information in cingulate and prefrontal cortices [Kolling et al. 2018]. Another study

developed a normative theory, based on Dyna, to predict not just whether but which memories
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should be accessed to enable the most rewarding future decisions [Mattar and Daw 2018]. This

theory conceptualizes planning as learning about values from remembered experiences, gener-

alizing work on tradeoffs between model-based and model-free controllers with a gain term that

prioritizes states behind the agent when an unexpected outcome is encountered and a need term

that prioritizes states ahead of the agent that are imminently relevant. Together, this unifies vari-

ous functions of hippocampal replay including planning, learning, and consolidation. One aspect

of human planning which I have neglected to mention until now is that most studies assume that

task representations are complete and fixed. However, efficient and flexible planning might also

need to control these representations in order to quickly simplify and more easily reason about

problems. One model formalizes how specific task decomposition strategies towards subgoals

reflect resource rational tradeoffs [Correa et al. 2023], while another characterizes how an ideal,

cognitively limited decision-maker forms value-guided construals that balance the complexity of

a representation and its use for planning and acting [Ho et al. 2022a]. There have also been ex-

tensions in the realm of heuristic and optimal algorithms for human planning. One line of work

has tackled the breadth-depth dilemma in large decision trees, accounting for people’s policies

that trade off between evaluating many options and gaining more information about a smaller

number of options [Moreno-Bote et al. 2020; Mastrogiuseppe and Moreno-Bote 2022]. Another

model makes use of previously exercised action sequences to make planning faster and more ac-

curate by focusing expansion of the search tree on paths that have been frequently used in the

past [Éltető and Dayan 2023]. This effectively reduces deep planning problems to shallow ones

via multi-step jumps in the tree and can be embedded into an MCTS planner. Overall, the com-

putational approach to studying multi-step planning in humans continues to be an active area

of research, with contributions guided by disparate task environments, the interplay between

heuristics and optimality, and results in neuroscience and RL.
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1.3 Tasks

1.3.1 Chess

Chess presents an intriguing case study in multi-step planning applied to human cognition. As

I’ve previously outlined, computers have already far surpassed human abilities in chess, primarily

by relying on increased computational resources to evaluate orders of magnitude more moves.

Top players can arrive at decisions that are nearly as good as those selected by computers de-

spite having vastly greater resource limitations. Therefore, the cognitive science of chess has

historically been of a topic of much interest. In fact, chess was referred to by Chase and Simon

as the “Drosophila of psychology,” or a standard task environment around which knowledge and

understanding can accumulate much like model organisms in biology. Seminal work in this field

dates back to Adriaan de Groot, who in 1946 proposed that strong chess players make moves by

constructing a decision tree through an iterative deepening algorithm [De Groot 2014]. Experi-

mentally, De Groot studied gifted chess players, conducting experiments in which he presented

players with pre-configured board positions and asked them to freely narrate their thought pro-

cess while selecting a move, finding no differences between stronger and weaker players. In an-

other experiment, de Groot instructed players to memorize and reconstruct given chess positions,

this time finding that stronger players were able to place more pieces correctly. In 1973, Chase

and Simon repeated the reconstruction experiment, but added a control condition in which play-

ers were provided with scrambled and often illegal chess positions [Chase and Simon 1973]. They

found that players were better at reconstructing legal positions, suggesting that their represen-

tations in memory were somehow aided by commonly occurring board states. As a mechanism,

they hypothesized that people represent chess positions with an array of small patterns called

chunks, allowing them to compress information and avoid capacity limits.

Since these experiments, a growing body of literature has investigated the nature of expertise
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in planning by studying how expert chess players differ from less skilled counterparts. Over the

years, the explanation for the superior performance of experts in chess has been hotly contested.

One line of thought is that this difference is primarily due to better pattern recognition. To

support this hypothesis, another replication of the reconstruction experiment analyzed which

specific features of a chess position players remember incorrectly [Linhares et al. 2012]. Other

studies found no difference in search between experts and novices [Gobet and Simon 1998] or

used eyemovements and visual search tasks to further validate that experts possess chess-specific

improvements in performance [Bilalić et al. 2010]. Conversely, some experiments have shown

that deeper search is a key factor for improved play in chess. In a set of papers, players were asked

to play chess under time pressure [Holding 1992] or while counting backwards [Holding 1989a]

in order to tax their working memory. Both manipulations were designed to selectively impair

search while leaving pattern recognition abilities intact, and affected experts more than novices.

In another experiment, players evaluated chess positions taken from Grandmaster games, after

which theywere shown the next fewmoves in the game and asked to re-evaluate [Holding 1989b].

Here, weaker players were more likely than stronger players to change their evaluation after

witnessing the Grandmaster’s moves. There have also been studies that directly investigated

differences in search between experts and novices, finding that they do exist [Saariluoma 1992;

Campitelli and Gobet 2004]. At least one intermediate proposal has been suggested, which is that

improved search may be responsible for the development from novice to expert, but the step from

expert to to Grandmaster level relies on pattern recognition [Ericsson and Smith 1991].

However, developing computational cognitive models that accurately predict the moves of

individual chess players has proven to be difficult [Gobet and Jansen 1994; Gobet 1997]. Instead,

studies implicitly assume models of the cognitive processes by which chess players arrive at their

decisions and often rely on clever experimental manipulations or verbal reports to answer ques-

tions about human reasoning during play [Holding 1989a; Charness 1989]. While there is still

no process-level theory of human planning in chess, recent progress in understanding people’s
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strategies during gameplay has been made due to technological advancements in computer hard-

ware as well as the availability of online chess data. One computational approach in this domain

tested the hypothesis that people intelligently select the situations in which computational re-

sources are spent [Russek et al. 2022]. Specifically, players seemed to spend more time thinking

in board positions where planning was more beneficial, and this effect was greater in stronger

players. This article combined the Stockfish chess engine (https://stockfishchess.org) to

estimate the benefit of applying planning computations for each board position occurring in 12.5

million games from the Lichess database (https://lichess.org) as follows:

Δ𝑈𝑐 = 𝑈𝑐 (𝑚𝑐) −𝑈𝑐 (𝑚−𝑐). (1.5)

The benefit of computation is the increase in board position advantage Δ𝑈𝑐 , where players can

make the maximum utility move𝑚−𝑐 with no planning or perform a planning computation which

leads to amore accurate utility function𝑚𝑐 and then select the newmaximumutilitymove. Mean-

while, another study utilized the same chess database to develop an algorithm for calculating the

riskiness of each move in a chess game [Holdaway and Vul 2021]. This showed that players

exhibit state-dependent risk preferences, change their risk-taking strategy depending on their

opponent, and that these effect differs in experts when compared to novices. A third study in-

vestigated the kinds of decisions where people are likely to make errors in chess [Anderson et al.

2017]. After conducting this analysis at a large scale, features describing the inherent difficulty of

a move in a game turned out to be significantly more powerful than features based on skill or time

in terms of predicting errors in human play. This collection of results suggest that, despite the

state space complexity of chess, it is possible to use quantitative methods to investigate human

cognition in a paradigm for complex planning.
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1.3.2 Games as cognitive tasks

Complementary to studies that use chess, there has been a noticeable trend in cognitive science

to break the traditional practice of experimental paradigms that are designed to isolate a single

variable while carefully controlling for sources of variation. Much like the standard tasks used

to study human planning, this reductionist approach permits the field at large to conduct pre-

cise statistical and computational modeling. Despite this, it also restricts the set of answerable

questions that can be posed by researchers, and many groups have expanded their repertoire of

tasks to include games (Figure 1.5). Games can be loosely defined as "facilitators that structure

player behavior and whose main purpose is enjoyment" [Aarseth 2014; Allen et al. 2023] and

have been proposed as candidate environments to study the mind since the days of Newell and

Simon [Newell and Simon 1956; Gobet et al. 2004]. The benefits of using games in psychology are

twofold: (1) they can clarify whether results or models derived from constrained laboratory tasks

generalize, and (2) they can open new research directions for understanding human cognition.

In contrast to conventional paradigms, which tend to involve abstract, arbitrary rules along with

explicit instructions to guide behavior and require monetary rewards to incentivize participation,

tasks that are game-like are importantly both intuitive and enjoyable. In the remainder of this

section, I explain these two components in more detail.

Games are designed to produce behavior approaching the complexity of the real world by

being intuitive to players. In other words, games reflect the assumptions that people have a pri-

ori, or their inductive biases, which constrain and guide a learner to prefer one hypothesis over

another. One successful game for studying inductive biases in a more complex environment re-

quired participants to select one of three tool objects to interact with in a scene as well as the

precise location to place it [Allen et al. 2020]. In this setting, people represented actions rela-

tionally to compress the space of actions to consider, and these actions were learned via limited

amounts of trial-and-error experience. Researchers have also used existing games such as the
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Lab-based tasks

Game-based tasks

Planning Memory Exploration Problem solving Multi-agent

Figure 1.5: Comparing lab-based and game-based tasks developed to investigate different cognitive func-
tions. Top row: the two-step task [Daw et al. 2011b], an n-back memory task [Kirchner 1958], a multi-
armed bandit task [Gershman 2019], the Towers of London task [Shallice 1982], and a matrix-form social
coordination task [Costa-Gomes et al. 2001]. Bottom row: a programatically generated video game [Tsi-
vidis et al. 2021], Sea Hero Quest [Coutrot et al. 2018], Little Alchemy [Brändle et al. 2022], the Virtual
Tools game [Allen et al. 2020], and Overcooked [Wang et al. 2020]. Adapted from [Allen et al. 2023].

Atari video game suite, where each state is an image shown on the screen. Here, people critically

made use of the existence of objects to play the game and build relational theories about how these

objects should behave [Dubey et al. 2018; Tsividis et al. 2021]. This extends to multiplayer games,

which necessitate shared inductive biases and have been used to study social behaviors that rely

on cultural transmission, collective search, and other large-scale social phenomena [Carroll et al.

2019; Wang et al. 2020; Kumar et al. 2021].

Games also provide a mechanism for engagement by making participation itself naturally

rewarding. Previous findings on curiosity and boredom argue that people prefer to participate

in challenging tasks that provide new information while avoiding excessively simple or difficult

tasks [Schmidhuber 2010; Geana et al. 2016; Ten et al. 2020]. However, designing experiments

to study intrinsic motivation, meaning that they can track all the potential kinds of exploration

people can do in the real world and avoid explicit rewards, is nontrivial. This makes it hard to
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investigate questions such as why people explore new systems [Brändle et al. 2021] or persist in

the presence of repeated failure [Leonard et al. 2017]. One related study adapted a game in which

players have to combine elements to create new elements in order to understand how people

navigate environments where there are no explicit goals [Brändle et al. 2022]. By using data from

an original mobile game that people elected to play, empowerment was identified as a key factor

for continued play in a truly intrinsically motivating setting. Another experiment investigated

player enjoyment in games with a specific goal [Pedersen et al. 2021]. Seemingly, compensating

players via classical experimental platforms led to players exploiting subtle flaws in the game’s

mechanics to rapidly complete the task in an unintended way. However, when the concept of

citizen science was introduced, where participation from the general public was framed as col-

lectively working towards a common goal, players behaved much more conscientiously. In short,

games are engineered to be both intuitive and enjoyable, and thus make viable candidate tasks in

cognitive science.

1.3.3 Large-scale data sets

The renewed interest in games has coincided with another trend in cognitive science, which is

analyzing massive data sets collected through online experiments. The purpose of this method-

ological shift is to obtain rich data in participants’ real-world environments, and when combined

with game-based studies can lead to invaluable accounts of naturalistic behavior. Indeed, these

two approaches are almost inseparable, as complex tasks simply require more data to be properly

studied from a computational perspective. Newly available pipelines have undoubtedly encour-

aged researchers to begin implementing large-scale studies, from the ease of developing games

with platforms like Unity to rapid data collection platforms such as Prolific or Amazon Mechan-

ical Turk to database storage systems like Structured Query Language (SQL). Further, partnering

with developers and other companies to make custom games or to gamify classical experimental

paradigms has been a fruitful approach that makes use of existing platforms and userbases.
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In turn, this data can be used to interrogate a wide array of cognitive mechanisms, and virtu-

ally every studymentioned in the previous section was facilitated by a large-scale data set. One of

the first such online experiments required players to guide a neuron from connection to connec-

tion by quickly clicking on potential targets [Stafford and Dewar 2014]. This allowed analyses to

be conducted for the full time course of learning, revealing that while practice improved all play-

ers’ performance, it did not affect all players equally. Another challenge that these kind of data

sets pose relates back to motivation, since participants now have complete autonomy over when

and for how long to engage in the given task. That is to say, when individuals drop out for rea-

sons that are related to their current or future performance, their learning functions are directly

biased. The existing literature on human learning often ignores this effect, with a notable excep-

tion extrapolating group learning policies for age-related differences in dropout in a large-scale

learning study [Steyvers and Benjamin 2019]. In general, massive data sets allow researchers to

test theories over manymore data points and participant characteristics than was previously pos-

sible with laboratory-based samples. For example, a virtual navigation task collected data across

4 million participants in 195 countries gave insight into why some nations have better navigators

[Coutrot et al. 2018], how environment can shape spatial skills [Coutrot et al. 2018], and person-

alized diagnostics for individuals at genetic risk of Alzheimer’s disease [Coughlan et al. 2019].

Otherwise, various experiments have made use of such data to uncover naturalistic behavior in

visual search [Mitroff et al. 2015], exploration in real-world choices [Schulz et al. 2019], and in-

dividual differences associated with learning [Steyvers et al. 2019; Steyvers and Schafer 2020].

The argument for studying more naturalistic tasks, which is closely related to the collection of

large-scale data sets, has also been made in the context of RL [Wise et al. 2023].

Finally, machine learning methods require large amounts of training data. As an example,

the approaches that leverage ANNs to construct computational models are primarily enabled by

recent large-scale sources of human behavioral data. This is similarly true for many cognitive

studies that have a neural network component, such as the recent wave of large language model
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(LLM) experiments. LLMs are transformers that recognize, translate, predict, or generate text

or other content, and have been used to study human cognition globally as well as in specific

domains such as problem solving [Yao et al. 2023] and game playing [Akata et al. 2023]. Moving

forward, the shift towards large-scale data will continue to be crucial in developing naturalistic

theories of human behavior and for bridging the gap with artificial intelligence.

1.4 Dissertation outline

In this dissertation, I will explore human decision-making in a task where the primary difficulty

is the requirement to plan ahead. This task is a two-player combinatorial game which has similar

properties to chess, but lies at an intermediate level of complexity where behavior is rich yet still

amenable to cognitive modeling. In Chapter 2, I will introduce the task, which we call 4-in-a-

row, as well as a large-scale mobile data set consisting of over 10 million games from over 1.2

million unique users. I will then present a heuristic search model that combines a value function

and best-first search to predict people’s choices in the game, as well as results showing that the

model can reveal insights on the nature of expertise while planning. These are meant to serve as

foundational components upon which the rest of the dissertation was built. The work described

in Chapter 2 was led by Bas van Opheusdenwith contributions fromGianni Galbiati, Zahy Bnaya,

and Yunqi Li and published in Nature [van Opheusden et al. 2023].

In Chapter 3, I will train deep neural networks on this data set, showing that they accurately

predict humanmoves while capturing meaningful patterns in the data. Then, I will use deviations

between the heuristic search model and the best network to identify opportunities for model

improvement. Based on this analysis, I will implement three extensions to the model that range

from a simple opening bias to specific adjustments regarding endgame planning. This chapter

is meant to demonstrate the advantages of model comparison with a high-performance deep

neural network as well as the feasibility of scaling cognitive models to massive data sets for
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systematically investigating the processes underlying human sequential decision-making. The

work described in Chapter 3 was done in collaboration with Heiko H. Schütt and published in

Scientific Reports [Kuperwajs et al. 2023]. A preliminary version was published as a conference

paper in the Proceedings of the 44th Annual Meeting of the Cognitive Science Society [Kuperwajs

et al. 2022].

In Chapter 4, I will derive a principled framework for meta-planning, or determining which

action to plan for. Specifically, the model is an abstracted metacognitive process where evalu-

ating candidate actions via simulation is viewed as gaining noisy measurements of the value of

each action. This statistical estimate is then combined with prior experience to decide whether

and in which direction to plan. I will highlight how the model produces intuitive simulation

results across a range of parameters and acts as a more valuable, informed method for guiding

planning when compared to best-first and breadth-first search. Additionally, I will link this nor-

mative approach to meta-planning back to 4-in-a-row by showcasing that it produces hypotheses

that account for various human response time trends. The main contribution of the model is to

treat policy evaluation as an inference problem, where a distributional representation of value

is used to compute information gain and direct simulations towards the most promising actions.

The work described in Chapter 4 was done in collaboration with Mark K. Ho and will be sub-

mitted for publication after this dissertation is complete. A preliminary version was published as

a conference paper in the Proceedings of the 43rd Annual Meeting of the Cognitive Science Society

[Kuperwajs and Ma 2021].

Finally, in Chapter 5, I will pivot away from planning to show that this complex task and data

set provide opportunities to ask a wide variety of scientific questions. Namely, I will investigate

the relationship between learning and motivation by establishing that there is a correlation be-

tween task performance and total experience. Then, I will present a series of analyses which aim

to uncover the factors that influence this correlation, such as playing strength, the time interval

between games, and opponent difficulty. I will conclude by presenting a dynamic model of the
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nature of people’s learning over time that replicates these empirical findings. The work described

in Chapter 5 will be submitted for publication after this dissertation is complete. A preliminary

version was published as a conference paper in the Proceedings of the 44th Annual Meeting of the

Cognitive Science Society [Kuperwajs and Ma 2022].
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2 | Framework

What algorithms do people use to make decisions with future consequences in complex environ-

ments? Planning and sequential decision-making are ubiquitous in many aspects of daily life.

A core difficulty of studying human planning from the perspective of a cognitive scientist is de-

veloping tasks and models that scale to the full complexity of real-world problems. Laboratory

experiments that probe planning often restrict the size of the state space in order to preserve

the tractability of behavioral modeling [Daw et al. 2005; Huys et al. 2012; Solway and Botvinick

2015]. Meanwhile, studies across other domains such as expertise in chess [Chase and Simon

1973; De Groot 2014], player modeling [Yannakakis and Togelius 2018], and artificial intelligence

[Silver et al. 2016] embrace complexity but compromise on the level of detail in their methods, or

are not concerned with modeling planning in a manner that is human-like. As such, the approach

outlined in this chapter and maintained throughout this dissertation is to compromise between

these two extremes by designing a task that is complex enough that it allows for rich data on the

computational principles underlying human sequential-decision making, but at the same time

simple enough to allow for precise behavioral modeling.

In this chapter, I provide a description of the proposed framework for studying complex plan-

ning. Namely, I introduce a task and human behavioral data set as well as a heuristic search

model, all of which will be reused throughout later chapters. Then, I summarize the key methods

and results from the publication in which these were introduced [van Opheusden et al. 2023],

validating the model itself and investigating the nature of expertise in planning.
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2.1 Task and data

The perfect task for studying complex planning needs to be difficult enough that strong play

requires thinking multiple steps ahead, but tractable for computational modeling. Furthermore,

to encourage learning, it should be novel, have simple rules, and be engaging. To satisfy these

competing desiderata, we use an instance of an mnk-game. An mnk-game is adversarial, where

two players alternate placing tokens on an m-by-n board and the objective for both players is to

get k of their own tokens in a row horizontally, vertically, or diagonally. As a reference, tic-tac-

toe is a 3,3,3 variant of mnk, and we use 4,9,4. The game, which we call 4-in-a-row, is played on

a 4-by-9 board with the aim of connecting four tokens (Figure 2.1). Since 4-in-a-row is winner-

takes-all and without hidden information, it is solvable [Uiterwijk 2019]. That is to say, there

is a weak solution where the first player always wins assuming perfect play from both sides.

4-in-a-row can be played online (https://weijimalab.github.io).

With approximately 1.2 ·1016 non-terminal states, 4-in-a-row has a state space complexity far

beyond common cognitive science tasks [van Opheusden and Ma 2019]. This level of complexity

prevents any exhaustive search or brute force algorithms from being successful. Therefore, peo-

ple as well as artificial agents who play the game need to address the challenge of efficient search,

which aims to find promising moves without expending excessive computational resources. Un-

derstanding the algorithms that people employ to solve this computational problem provides

insight into human cognition, specifically in the domain of sequential decision-making.

We conducted several laboratory experiments and analyses to investigate human behavior in

4-in-a-row. In our first experiment, 40 human participants played games against other human

players without any time pressure. This is the sole laboratory experiment that I include in this

dissertation, since it was used to validate the heuristic search model, conduct model compari-

son, generate computer opponents for the large-scale implementation of the task, and compute

playing strengths as well as the model’s derived metrics. We also fit behavioral data across a
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Figure 2.1: An example board position in 4-in-a-row in the laboratory version of the task (left) and the
gamified version used on the mobile platform (right). Two players, black and white or yellow circles
and green stars, alternate placing pieces on the board, and the first player to connect four pieces in any
orientation wins the game.

wide array of other experiments, namely generalization, Turing test, eye tracking, time pressure,

learning, and memory and reconstruction. The methods and results for each are available in [van

Opheusden et al. 2023].

We also partnered with Peak, a mobile app company, to implement a visually enriched version

of 4-in-a-row on their platform (https://www.peak.net), which users play at their leisure in

their daily environment. We are currently collecting data at a rate of approximately 1.5 million

games per month, and throughout this dissertation we used a subset consisting of 82, 761, 594

moves from 10, 874, 547 games and 1, 234, 844 unique users collected between September 2018 and

April 2019. In this version of the task, users always move first against an AI agent implementing

the model of human planning that we describe in the next section, with parameters adapted from

fits on the previously collected human-versus-human games [van Opheusden et al. 2023]. In the

context of this chapter, this data was used to investigate the generalizability of the results from

the laboratory learning experiment. In all other chapters, this is the primary data set used.
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2.2 Model

The computational cognitive model for 4-in-a-row is adapted from the artificial intelligence liter-

ature, in particular heuristic search [Sutton and Barto 2018]. We assume that people’s choices on

each move are independent and generated by the same decision-making process with the same

parameters. Our model consists of two components: a value function and a tree search algorithm.

Furthermore, we include sources of noise to capture variability in human play and human-like

mistakes. Here we define the model formally, and we provide further details in Appendix A.3.

2.2.1 Value function

The core component of the model is an evaluation function𝑉 (𝑠,𝑤) which assigns values to board

states 𝑠 [Sutton and Barto 2018; Bonet and Geffner 2001; Campbell et al. 2002]. The higher this

value, the more likely the player is to win from that state. We assume that people use value

function approximation [Sutton et al. 1999] such that their value function is a weighted linear

sum of features. To provide an example, a common heuristic in chess is to count pieces for

both players, with different point values for different pieces (pawns, knights, rooks, and so on).

Similarly, our heuristic function counts how often particular features appear on the board (Figure

2.2A). It weighs those counts by feature weights, resulting in a quick-to-compute but approximate

value estimate. For this sum, we used the following 5 features: center, connected 2-in-a-row,

unconnected 2-in-a-row, 3-in-a-row and 4-in-a-row. The center feature assigns a value to each

square corresponding to inverse Euclidean distance from the board center, and sums up the values

of all squares occupied by the player’s pieces. The other 4 features count how often the associated

pattern occurs on the board horizontally, vertically, or diagonally:

Connected 2-in-a-row: two adjacent pieces which lie on a line of four contiguous squares,

with the remaining two squares empty.
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Unconnected 2-in-a-row: two non-adjacent pieces which lie on a line of four contiguous

squares, with the remaining two squares empty.

3-in-a-row: three pieces which lie on a line of four contiguous squares, with the remaining

square empty. This pattern represents an immediate winning threat.

4-in-a-row: four pieces which lie on a line of four contiguous squares. This pattern appears

only in board states where a player has already won the game.

We associate weights𝑤𝑖 to these features, and define the value function as follows:

𝑉 (𝑠,𝑤) =
4∑︁
𝑖=0

𝑤𝑖 𝑓𝑖 (𝑠, self) −
4∑︁
𝑖=0

𝑤𝑖 𝑓𝑖 (𝑠, opponent). (2.1)

In the following, we omit the dependence of 𝑉 (𝑠,𝑤) on𝑤 for brevity.

Whenever the model evaluates a state, the weights of features belonging to the active player

are multiplied by a scaling constant𝐶 . This captures value differences between active and passive

features. For example, a 3-in-a-row feature signals an immediate win on the active player’s move

but not the opponent’s because it can be blocked. We do not scale the center feature.

2.2.2 Tree search

To refine the value estimate, the model explores a decision tree of possible continuations (Figure

2.2B-C). The evaluation function guides the construction of this decision tree with an iterative

best-first search algorithm [Dechter and Pearl 1985]. Each iteration, the algorithm chooses a

board position to explore, evaluates the positions resulting from each legal move, and prunes all

moves with value below that of the best move minus a threshold 𝜃 . As such, the model expands

nodes on the principal variation, or the sequence of best moves for both players given the cur-

rent decision tree. The model’s mechanisms for pruning branches in the decision tree with low

heuristic value was inspired by previous studies [Huys et al. 2012, 2015]. This improves the effi-
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Figure 2.2: Computational cognitive model for 4-in-a-row. (A) Features used in the heuristic function of
the cognitive model, which are intermediate patterns to winning the game. Features with identical colors
are constrained to the same weights, and the heuristic evaluation is a sum over the counts of these fea-
tures. The model also includes a central tendency feature and a 4-in-a-row feature. (B) Illustration of the
heuristic search algorithm. In the root position, black is to move. After expanding the root node with two
candidate moves for black and evaluating the resulting positions using the heuristic function, the algo-
rithm selects the highest value node (𝑉 = 2.3) on the second iteration and expands it with two candidate
moves for white. The algorithm evaluates the resulting positions, and backpropagates the lowest value
(𝑉 = 0.3), since white is the opponent, meaning that the value in the red solid box replaces the one in the
red dashed box and the root node is updated to the highest value among its children (𝑉 = 1.8). On the
next iteration, the algorithm will again expand the child node with the highest value. (C) Decision tree
built by the model. The red nodes indicate the sequence of highest-value moves for both players. Note
that different branches of the tree are evaluated to different depths

ciency of search, but the model may not spot winning sequences. The algorithm has a stopping

probability 𝛾 , resulting in a geometric distribution over the number of iterations.

2.2.3 Noise

To account for variability in people’s choices and enable the model to make human-like mistakes,

we added three sources of noise. Before constructing the decision tree, we randomly dropped

features at specific locations and orientations to model selective attention, which are omitted

during the calculation of 𝑉 (𝑠). We interpret these feature omissions cognitively as lapses of

selective attention [Treisman and Gelade 1980]. During tree search, we added Gaussian noise to
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𝑉 (𝑠) at each node. Finally, we included a lapse rate 𝜆.

2.2.4 Model fitting

The model has 10 parameters: the 5 feature weights, the active-passive scaling constant 𝐶 , the

pruning threshold 𝜃 , the stopping probability 𝛾 , the feature drop rate 𝛿 , and the lapse rate 𝜆. We

infer these parameters for individual participants with maximum-likelihood estimation. Unfortu-

nately, deriving the log-likelihood analytically requires marginalization of all latent variables (i.e.

which features are dropped, the value at each node, and the number of iterations in the search

algorithm), which is intractable. Restricting ourselves to only models with analytical likelihoods

would limit the types of models that we can consider, particularly in regards to the noise struc-

ture. Instead, we estimated the log probability in a given board position with inverse binomial

sampling (IBS) [van Opheusden et al. 2020], which compares the data to simulated data gener-

ated from the model. IBS is unbiased but its estimates are noisy. Additionally, we cannot calculate

gradients of the log-likelihood, so we optimized the log-likelihood function with Bayesian adap-

tive direct search [Acerbi and Ma 2017]. To reduce overfitting, we compare models using 5-fold

cross-validation.

This pipeline is computationally expensive, and fitting one participant’s data for a single

model requires approximately 1014 floating point operations. We perform the model fits on the

NYU high-performance cluster (Intel Xeon E5-2690v2 CPUs 3.0 GHz) with a parallel implemen-

tation of IBS that uses 20 cores. On our hardware, fitting takes approximately 1 hour per set of

parameters for a participant.

2.2.5 Analysis methods

To estimate a player’s playing strength from games against computer opponents, we use Elo

ratings [Elo 1978], implemented using the publicly available program Bayeselo [Hunter 2004]. To
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measure Elo ratings of all players in all experiments against a common baseline, we run Bayeselo

on a database containing all games and a simulated computer-versus-computer tournament, in

which each computer plays once against every other computer, including itself. In the computer-

versus-computer tournament, we include all agents used across all laboratory experiments as

well as the agents used in the mobile app.

We can use the model to calculate the game-theoretic value �̃� (𝑠) of a position 𝑠 , which is the

outcome of a game starting from position 𝑠 assuming perfect play from both sides. To compute

the game-theoretic value, we execute the best-first search algorithmwith default feature weights,

no sources of noise, and no pruning. In the limit of infinitely many iterations, the value of the

root node in the decision tree of best-first search is guaranteed to converge to the game-theoretic

value. In practice we found that 200,000 search iterations was sufficient for almost all positions.

For positions in which 200,000 iterations did not yield a determined result, we set the game-

theoretical value to �̃� (𝑠) = 0, which is equivalent to a draw.

To analyze the nature of expertise, we convert the set of 10 parameters from the main model

to 3 derived metrics: planning depth, feature drop rate, and heuristic quality. We define planning

depth as the length of the principal variation in the model’s decision tree, averaged across simu-

lations of the model with a given a parameter vector in a fixed set of probe positions. Specifically,

we used all positions that occurred in the human-versus-human experiment (5,482 positions).

As in algorithm 2, the principal variation is the sequence in which both players make the best

move according to the values in the decision tree, from the root node to a leaf node. The length

of this sequence is equal to the depth of that leaf node, and reflects how far into the future the

model plans. We average this depth across 10 simulated moves, and across all probe positions.

The feature drop rate is simply the parameter 𝛿 . To define heuristic quality, we evaluate 𝑉 (𝑠)

in all the probe positions, and compute the Pearson correlation between tanh(𝑉 (𝑠)/20) and the

game-theoretic value �̃� (𝑠). Note that the heuristic quality only depends on the feature weights

®𝑤 and the active scaling constant 𝐶 .
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Figure 2.3: The model accounts for human choices and response times. (A) Example board position from
a human-versus-human game. The open circle indicates the move that the active player (white) chose.
The red shading indicates the probability distribution of that participant’s next move, as predicted by the
model with parameters inferred for that participant using 5-fold cross-validation. (B) Model accuracy
(percentage of correctly predicted moves) for each participant in human-versus-human games, ranked
from worst to best predicted. Data are mean ± s.e.m. n denotes the number of trials per participant. The
dashed line represents the accuracy of a “chance” model, which assumes that people move onto a ran-
domly selected unoccupied square. (C) Predicted and observed response times (RT) across all participants
in the human-versus-human data. We exclude any positions with fewer than 6 or more than 30 pieces on
the board. (D) The correlation between predicted and observed response times for each participant.

Because the probe positions are fixed in the definition of planning depth, it is purely a func-

tion of the model parameters. Planning depth depends primarily on the stopping probability

(Spearman correlation: 𝜌 = −0.87, 𝑝 < 0.001), and there is a minor dependence on the pruning

threshold (𝜌 = −0.21, 𝑝 < 0.001). These correlations are computed across a range of parameter

vectors taken frommodel fits to human data. The heuristic quality is a more complicated function

of the feature weights and active scaling constant. For example, the heuristic quality correlates

with𝑤3-in-a-row/𝑤connected 2-in-a-row, but the correlation is relatively weak (𝜌 = 0.55, 𝑝 < 0.001), and
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Figure 2.4: Model comparison. We validate our main model specification by comparing to alternatives
in three categories: lesions generated by removing model components (red), extensions generated by
adding newmodel components (blue), and modifications generated by replacing a model component with
a similar implementation (green). Cross-validated log-likelihood per move, across all participants in the
human-versus-human experiment. Error bars indicate mean and s.e.m. of the difference in log-likelihood
with the main model.

other featureweights influence the heuristic quality too. In other words, the derivedmetrics carve

up the set of 10 parameters: planning depth primarily depends on pruning threshold and stop-

ping probability, feature drop rate on the feature drop rate, and heuristic quality solely depends

on feature weights. Together, the three metrics provide a reduced representation of the model

parameters that is more interpretable, more reliably inferred, and sufficient to capture increases

in performance.

2.3 Results

2.3.1 Model validation

In the human-versus-human experiment, the model predicts out-of-sample choices with 40.8 ±

1.4% accuracy (mean and standard error across participants, two-sample T-test against chance:
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𝑡 (39) = 26, 𝑝 < 0.001). Figure 2.3A shows an examplemodel prediction, and Figure 2.3B themodel

accuracy for each participant. We also tested the model’s ability to account for process data by

analyzing response times. To predict response times, we estimate model parameters from choice

data, and we extend the best-first search algorithm with an early stopping rule, which terminates

search when the model’s decision is unlikely to change with more iterations (Appendix A.4).

We then use the decision tree built by the model on each trial as a predictor for response time.

Figure 2.3C shows the predicted and observed response times (in logarithmic space) across all

participants in the human-versus-human experiment, and Figure 2.3D the Pearson correlation

for each participant (𝜌 = 0.351 ± 0.029, 𝑡 (39) = 12, 𝑝 < 0.001). We can use the logarithm rather

than raw response time values because human time perception and production approximately

obey Weber’s law [Getty 1975; Grondin 1992; Bizo et al. 2006], but this decision does not affect

the results. The ability of the model to predict response times on individual trials suggests that

people plan their moves by building decision trees, using an algorithm similar to that in our

computational cognitive model.

To validate the specification of our main model, we compare it to 22 alternatives (appendix

A.5). We tested three categories of alternative models: lesions generated by removing model

components, extensions generated by adding new model components, and modifications gen-

erated by replacing a model component with a similar implementation. In Figure 2.4, we show

the cross-validated log-likelihood per move of each model averaged across all participants in the

human-versus-human experiment. All lesion models fit worse than the main model, showing

that all model components are necessary to capture human behavior. In particular, lesioning any

feature, tree search, or feature dropping considerably worsens the model. Lesioning the active

scaling constant also worsens the model, but its effect is small. Of the modifications, the optimal

weights and Monte Carlo tree search models perform poorly. These results show that people’s

choices are consistent with a broad class of planning algorithms, namely ones that contain a

feature-based evaluation function, tree search, pruning, and a mechanism to capture attentional
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Figure 2.5: The effects of expertise on planning in mobile data. (A) The average Elo rating of users in the
mobile app as a function of number of games played. Data are mean ± s.e.m. across participants. (B) The
average depth to which users plan, as estimated by the behavioral model. (C) The same as in (B), but for
the feature drop rate. (D) The same as in (B), but for heuristic quality.

oversights. We select our main model as a representative of this class that balances parsimony

with predictive power.

2.3.2 Expertise

The model enables us to investigate how expert players differ from novices. In all of the labo-

ratory experiments, we investigated expertise in participants recruited to perform a psychology

experiment, and it was not necessarily clear whether those results would generalize to a more

natural context for acquiring expertise. To address this issue, we conducted the same analysis as

in the learning experiment using mobile data.

We analyze data from 1,000 randomly selected users who played at least 100 games, which

approximately matches the total experience of participants in our learning experiment. For each

user, we grouped their experience into 5 blocks of 20 games, and estimated model parameters

for each block. Playing strength (𝛽 = 1.13 ± 0.04, 𝑝 < 0.001, Figure 2.5A) and depth of planning

(𝛽 = 0.0108 ± 0.0010, 𝑝 < 0.001, Figure 2.5B) increase with experience, while feature drop rate

decreases (𝛽 = −2.58 · 10−4 ± 4.7 · 10−5, 𝑝 < 0.001, Figure 2.5C). We validate that the increase

in users’ planning depth is not a result of slower play (Figure 2.6), replicating the results from

the laboratory experiment. In this experiment, we also observe a reliable increase in heuristic
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Figure 2.6: Response time as a function of games played in the mobile data set. Error bars indicate s.e.m.
across participants.

quality (6.12 · 10−4 ± 4.2 · 10−5, 𝑝 < 0.001, Figure 2.5D). However, heuristic quality in the first 20

games of the mobile app data was much lower than that in the first session of the laboratory data

(0.5301 ± 0.0098 versus 0.4788 ± 0.0044, 𝑡 (999) = 4.7, 𝑝 < 0.001). Therefore, users seem to have

more opportunity to improve their feature weights, whereas heuristic quality in the laboratory

data might already start at ceiling.

Our model best matches individual participants’ choices with a planning depth of up to 6,

which contradicts participants’ anecdotal responses as well as previous studies that found lower

numbers [Snider et al. 2015; Krusche et al. 2018]. We first note that these planning depth esti-

mates do not imply that people’s plan is equally concrete for each of their next 6 moves. Our

model contains value noise that is summed along branches of the decision tree. Effectively, the

model forms a concrete plan for the first few moves, and later moves are planned more loosely.

Additionally, the model contains a sophisticated algorithm for deciding which nodes in the tree

to explore, but its decision as to when to terminate this search is random. In practice, this leads

the model to often continue search without changing its final decision. By contrast, people’s ter-

mination rules are more strategic and approach optimality [Callaway et al. 2022b]. In practice,

we can implement an early stopping rule that causes the model to estimate lower planning depth.

Though the stopping threshold cannot be identified from choice data, the effect of expertise on

planning depth is robust across a range of thresholds.
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2.4 Discussion

In this chapter, we introduced a two-player game of intermediate complexity that provides rich

human behavior, but for which computational cognitive modeling is still tractable. We demon-

strated that a computational model based on a heuristic value function and forward search algo-

rithm predicts human choices as well as reponse times. Using this task and model, we showed

robust evidence for increased planning and improved attention with expertise in large-scale mo-

bile data. Importantly, our results are consistent with improved pattern recognition in experts

[Huang et al. 2023], but highlight the underappreciated role of processing speed.

Would our results on the nature of expertise generalize to more complex games or natural

planning tasks? We speculate that in more complex games, expertise will also improve attention

and search. For the heuristic quality effect, we note that in the laboratory data, participants

already start with approximately correct inductive biases [Dubey et al. 2018] about the relevant

features and their relative values, and we observe no increase in heuristic quality with expertise.

In the mobile app data, people’s feature weights are initially worse and we do observe an increase.

Thus, themodel reveals a difference between laboratory andmobile data not obvious fromplaying

strength alone.

Complex games like chess or Go contain many non-obvious features which people can only

learn through extensive experience or explicit instruction [Charness et al. 2005]. Therefore, we

speculate that in such games, the superior performance of experts also involves domain-specific

feature knowledge. We can straightforwardly adapt our model to test this hypothesis, given a

procedure to generate sophisticated candidate features. For 4-in-a-row, we discovered a small set

of simple features that allow the model to explain people’s choices through manual exploration

and model comparison. A promising feature discovery approach for complex games would be to

examine internal representations of neural networks trained to either play these games or predict

human choices. Finally, our model only applies to deterministic two-player games, and human
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behavior in stochastic or multi-player games [Brown and Sandholm 2019; FAIR] might involve

additional computational mechanisms.

Our modeling results show how experts differ from novice players, but do not shed light

on how those differences are shaped by their specific experience. A promising candidate for

modeling the learning process is deep reinforcement learning, specifically algorithms such as

AlphaZero [Silver et al. 2018] and SAVE [Hamrick et al. 2019], which combine learning from

experience with forward planning at decision time. In future work, we aim to test these theories

by analyzing games from all 1.2 million users in the mobile data set. Our work also opens the door

to a precise understanding of human planning across development [Ma et al. 2022a] and in patient

populations. It also raises the question of how the components of the model are represented

neurally. A specific hypothesis is that the value of future states is correlated with the activity

of neurons associated with reward-based decision-making, such as those in orbitofrontal cortex

[Padoa-Schioppa and Assad 2006]. Additionally, we predict that the time course of neural activity

while a player contemplates their move reflects the dynamics of the value of the root node over

iterations of the search algorithm. In the following chapters, I will investigate distinct trajectories

made possible by the foundational efforts detailed in this chapter.
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3 | Neural networks

The standard approach to computational modeling in cognitive science involves handcrafting

a model and specifying free parameters that are adjusted to produce behaviors consistent with

empirical data [Busemeyer and Diederich 2010; Daw et al. 2011a]. Model predictions are then

evaluated using the parameter values that achieve the best match to the data. Based on these

evaluations, the model is iteratively amended to reduce remaining errors. Whether a specific

change is accepted or not is usually based on model comparison techniques, balancing the trade-

off between complexity and goodness of fit. This methodology yields interpretable models be-

cause all innovations are implemented by the researcher, but it provides no guidance for when to

stop searching for candidate models or what changes to try. In this pipeline, there is no way to

distinguish whether the unexplained variance represents natural variability in human behavior

or could be explained by a crucial change to the model. Even if it can be determined that the

model needs improvement, adjustments are usually based on intuition and manual engineering.

One method for addressing these limitations is to fit deep neural networks to behavioral data.

Deep neural networks make minimal assumptions about underlying cognitive mechanisms and

have sufficient capacity to represent virtually any computational process [Siegelmann and Sontag

1995; LeCun et al. 2015]. Training a network to predict human behavior in a particular task al-

lows the network to detect patterns in the data without requiring human understanding of these

patterns. An important step is then validating that the network is indeed accurately capturing

human decisions. After validation, the predictions from the network can be compared against a
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cognitive model’s predictions. Namely, deviations between the model and the network guide the

model improvement process by highlighting situations in which the model requires novel mech-

anisms to explain human behavior. When there is no clear way of summarizing or pooling data

across many trials, this method is more effective than simply investigating the model’s errors,

which are often caused by noise that no model can explain. One potential problem with this ap-

proach is that neural networks are so flexible that they run the risk of overfitting. Regularization

methods are a standard solution to overfitting in scenarios with limited data, while having access

to a large data set for training can ameliorate this problem.

Consequently, neural networkmethods for guidedmodel improvement have established them-

selves as an emerging field in cognitive science. The approach that we described in the previous

paragraph is particularly useful in settings where the task is complex enough to extract additional

meaningful information and when large-scale data exists to train relatively simple, feedforward

network architectures. This method was pioneered to discover algorithms underlying human

decision-making [Agrawal et al. 2020; Peterson et al. 2021] and categorization [Battleday et al.

2020]. A related line of work has started to develop recurrent neural networks for automated

model discovery, thus far primarily in reinforcement learning environments [Dezfouli et al. 2019;

Eckstein et al. 2023; Miller et al. 2023; Ji-An et al. 2023]. Recurrent neural networks are notori-

ously more difficult to train and analyze, but in turn can provide results for the simpler tasks and

smaller data sets that are more ubiquitous throughout the field. Together, these approaches share

the common goal of improving the process for developing cognitive models across a variety of

domains.

Recently, a growing body of literature has started to examine the algorithms underlying hu-

man sequential decision-making [Daw et al. 2011b; Huys et al. 2012; Snider et al. 2015; Sezener

et al. 2019; Kuperwajs and Ma 2021; Callaway et al. 2022b; Ho et al. 2022a]. Planning involves the

mental simulation of future actions and their consequences in order to make a decision, but evalu-

ating every possible course of action in real-world environments is simply intractable. Therefore,
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a fruitful approach has been to employ tasks with larger state spaces than are typically used in

cognitive science coupled with process-level models to investigate how people plan [van Opheus-

den and Ma 2019]. This combination of complex tasks and models in addition to the fact that

planning is an unobservable internal process limits traditional model development frameworks

and makes it an ideal domain for testing more powerful methods. One such example is 4-in-a-

row, where human decisions have been well-described by a computational cognitive model in

both laboratory and online experiments [van Opheusden et al. 2023]. These conditions make 4-

in-a-row particularly fitting for an approach to model improvement driven by neural networks: a

task with many different states where the key underlying features are hard to identify, a detailed

model that is already informative about human planning but can be refined further, and a very

large data set for training neural networks.

Here, our main contribution is to use deep neural networks to estimate the noise ceiling,

or the best fit that can be achieved on the data, relative to a cognitive model and subsequently

improve thatmodel. We emphasize themethods used to fit themodel and train the neural network

such that they can be compared while making use of the entire data set. Then, we show that

scaling up the size of the network approaches a satisfactory upper bound on the likelihood of

predicting human moves, and that the best network matches human behavior well on a variety

of quantitative and behavioral measures. We investigate the residuals between the model and

the network, deriving various candidate model improvements from our analysis. Namely, we

implement and test three distinct mechanisms that take into account early game biases, complex

interactions between model features that result in overlooked moves, and novel features in the

heuristic function. Taken together, this chapter highlights how deep neural networks andmassive

data sets can be leveraged to more systematically refine cognitive models.

46



3.1 Methods

3.1.1 Adapting the existing data and model

Importantly, we can utilize the existing framework for studying complex planning as a starting

point for further model development. We partitioned the large-scale 4-in-a-row data into three

sets: 90% for training (9, 787, 093 games), 5% for validation (543, 727 games), and 5% for testing

(543, 727 games). The training and testing sets were used for both the neural networks and the

cognitive models, and the validation set was used to monitor learning and experiment with hy-

perparameters for the neural networks.

One of the main goals of this work is to iteratively improve the interpretable cognitive model

of human planning introduced in the previous chapter by comparing its predictions with our best

neural network and subsequently testing various mechanisms inspired by this analysis. To avoid

confusion, the word model always signifies this cognitive model, while the deep neural network

will be referenced as the network. When we implement extensions of this cognitive model later

on, we will further delineate by labeling eachmodel. Amajor technical challenge involves scaling

up the fitting procedure for the cognitive model such that it makes use of the large-scale data set

and is directly comparable to the neural network. To achieve this, we kept an identical imple-

mentation of the heuristic search model but fit parameters for the entire training set. On each

model evaluation, we evaluate the log-likelihood on 100, 000 trials. We found that this yields an

unbiased and sufficiently precise estimate of overall performance. We then optimized this ap-

proximate likelihood for 20 different training runs and selected the best-performing parameter

set for testing. On the test data set, we ran 100 repetitions per move to estimate a log-likelihood,

followed by 200 simulations in each board position to get a probability distribution over move

predictions.

47



FC

Fully connected 
input

Repeated hidden layers 
+ skip connections + nonlinearity

Fully connected  
output + softmaxFlatten

Position 1

Position 36

Position 2

Position 3
FC

Figure 3.1: Neural network architecture. The board is represented as a 2 × 4 × 9 tensor filled with zeros
where there are no pieces and ones where there are pieces. One matrix encodes the user’s pieces, and the
second encodes the AI agent’s pieces. The board representation is flattened to a 72-dimensional vector,
and then passed into a series of hidden layers. Each hidden layer contains a fully connected layer, a ReLU
nonlinearity, another fully connected layer, and then adds the input from skip connections (red dashed
box). Finally, the fully connected output layer has 36 units and is passed through a softmax function,
which yields the probability that the model assigns to the human player selecting each position of the
board. In addition to varying the number of hidden layers in the network, the number of units per fully
connected layer is also varied when testing different networks.

3.1.2 Neural network training

To achieve sufficiently high performance on our data set, we constructed a deep neural network

architecture that can be systematically scaled up. All of our networks take a tensor representation

of the current board state and return a probability distribution for the next move over all board

positions. The predictions for different board positions are independent of each other in order

to match the cognitive model. We encode each board as two 4 × 9 binary matrices. The first

matrix has ones indicating the location of the user’s pieces, while the second 4 × 9 matrix has

ones marking where the AI agent’s pieces are located. Unoccupied locations contain a zero in

both matrices. Thus, the input to each network is 2 × 4 × 9, and the output of the network is a

36-dimensional vector, with each element representing a corresponding index of the board.

The architecture for our networks consists of an input layer that feeds into several hidden

layers followed by an output layer (Figure 3.1). The input layer flattens the 2 × 4 × 9 board into

a 72-dimensional vector and projects it to the number of dimensions used by the hidden layers
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Figure 3.2: Scaling up the neural network achieves a satisfactory upper bound on goodness of fit. (A)
Negative log-likelihood on the test data set as a function of the number of hidden layers and number of
units per hidden layer in each network. (B) Accuracy as a function of move number for the best neural
network, averaged across the test set. (C) Entropy of the best neural network’s output distribution as a
function of move number, averaged across the test set. (D) Negative log-likelihood on the test data set as
a function of playing strength, computed as an Elo rating (binned into quantiles).

with a fully connected layer. Each hidden layer consists of two fully connected layers with a

rectified linear function between them and skip connections. These skip connections add the

input of the hidden layer to its output without transformation, and aid in avoiding the vanishing

gradient problem [He et al. 2016]. The output layer is a fully connected layer that projects from

the dimensionality of the hidden layer to 36 units corresponding to the log probabilities for each

board position. During training, we scaled the network architecture by varying the number of

hidden layers as well as the number of units in each fully connected layer. In Figure B.1A, we

show an example loss curve for the largest network that we trained. We observed nearly identical

performance on validation and test data that we did not use for training, indicating that overfitting

is not an issue for our data set.

To eliminate potential predictions at squares occupied by pieces already on the board, we

subtracted a large value from the output at these locations. The final softmax operator always

sets the corresponding outputs to exactly 0 and normalizes the probability distribution over all

open positions. This also nulls all gradients for the occupied positions such that their values

are ignored for gradient backpropagation and learning during training. Prior work used convo-

lutional networks to predict human moves in Go [Sutskever and Nair 2008; Clark and Storkey
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2015], and we initially tested similar architectures in our task. However, we consistently found

that the convolutional networks performed worse than the fully connected layers in preliminary

training runs. Therefore, we decided to move forward using only fully connected networks.

3.2 Results

3.2.1 Neural network evaluation

In order to predict human behavior, we trained a total of 25 networks that varied along two di-

mensions: the number of hidden layers and the number of units per layer, spanning a range from

5 to 80 layers and 200 to 4000 units. We continued scaling up the networks until the log-likelihood

on the test data reached a plateau, meaning that additional increases in either dimension would

not lead to significant increases in performance (Figure 3.2A). The largest network achieved a

negative log-likelihood of 1.87 per move and a prediction accuracy of 41.71% on the test data.

Additionally, this network’s log-likelihoods per move were highly correlated with the networks

that are one step smaller in either direction, further supporting our conclusion that our results

would not radically change with larger networks (Figure B.1B-C). Therefore, we continue to an-

alyze the largest network in the remainder of the chapter. A full specification of the networks

that we trained and their performance is available in Table B.1.

We then assessed whether the network convincingly captures behavioral patterns. We first

considered the accuracy of the network’s predictions (Figure 3.2B) and the entropy of the net-

work’s output distributions (Figure 3.2C), both broken down by move number. Intuitively, posi-

tions in the early game are harder to predict because they consist of fairly empty boards where no

player can immediately win the game, and therefore result in lower accuracy and higher entropy

for the network’s output. Conversely, positions in the middle and late game are much easier

to predict as there are fewer alternatives and more pieces to inform decision-making, leading
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Figure 3.3: Summary statistics as validation that the neural network exhibits human-like behavior. Each
statistic is averaged by move number for moves made by users (black circles), the neural network (blue
lines), or a random model (green dashed lines).

to higher accuracy and lower entropy for the network’s output. These positions are also more

likely to contain winning moves, which lead to more stereotyped decisions. We then investigated

the negative log-likelihood for the network’s predictions as a function of playing strength, com-

puted using Elo ratings [Elo 1978]. Our network is able to more successfully capture the moves of

stronger players compared to weaker ones (Figure 3.2D), since unpredictable errors in gameplay

are more common in the latter group. In Figures B.2-B.4, we show example board positions for

each of the previous analyses, and in Figures B.5A-B we further analyze network accuracy as a

function of number of guesses and log-likelihoods for players with varying levels of gameplay

experience.

Next, we computed a set of summary statistics that characterize human play in 4-in-a-row.

For each move made by each user, we calculated the distance from the chosen square to the

center of the board, the distance to pieces owned by that user, the distance to pieces owned by

the opponent, the distance to the center of mass of that user’s pieces, the distance to the center

of mass of the opponent’s pieces, the number of that user’s pieces on the 8 squares neighboring

the chosen square, and the number of opposing pieces on neighboring squares. We also indicated
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whether with their chosen move, the user created a threat to win on the next move or parried

a threat from their opponent. We computed these statistics for moves made by the network in

the same positions encountered by human players and for random moves. Figure 3.3 shows the

average of these summary statistics aggregated across all users in the test set as a function ofmove

number. This analysis probes systematic patterns in people’s gameplay, for example a tendency

to start playing near the center of the board and gradually expand outwards. For all summary

statistics, people deviated considerably from random, and the neural network matched the data

almost exactly. In sum, these results establish that the neural network accurately captures human

decision-making in 4-in-a-row.

3.2.2 Comparing the cognitive model and neural network

In terms of overall performance, the cognitive model that we have discussed so far in this disserta-

tion, which we subsequently refer to as the baseline model in this chapter, performed worse than

the network on all measures that we tested. Specifically, the baseline model achieved a negative

log-likelihood of 2.17 (0.30 more than the network) and prediction accuracy of 34.88% (6.83% less

than the network) on the test data. Additionally, the network’s predicted log-likelihood per move

was typically higher than that of the model (𝑡 = 322.86, 𝑝 < 2 · 10−308, Figure 3.4A). The base-

line model’s average accuracy per move was lower than the network’s throughout the course of

gameplay (Figure B.5C), and on the summary statistics, the model deviated further from human

data than the network (Figure B.6). Thus, there is room for improving the baseline model.

Having established that there exist mechanisms that describe aspects of human behavior but

were overlooked in the construction of the baseline model, our goal is to identify and implement

such mechanisms. An initial attempt at this might involve the traditional model development

approach, namely directly comparing the baseline model to the data. However, even with the

size of our data set, most board positions beyond the early game were only encountered once

by human players. Therefore, many of the 2, 698, 483 board positions where the baseline model
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Figure 3.4: Iterating over cognitive model extensions using the neural network. (A) Density plot of the
difference in log-likelihood per move in the test set for the neural network and baseline model. Inset
is the histogram version of the same log-likelihood difference (mean of baseline minus neural network:
0.29993 ± 0.00039). (B) Model extensions derived from comparing the board positions that the neural
network correctly predicted and the baseline model did not. (C) Negative log-likelihood for each model
extension for the best set of parameters across 20 different fitting runs on the training data (light orange)
as well as averaged across each move in the test set for the same parameters (dark orange). Error bars
indicate the standard error of the mean for the test set. (D)Density plot of the difference in log-likelihood
per move in the test set for the defensive weighting model and baseline model (mean of baseline minus
defensive weighting: 0.03097 ± 0.00022).

predicted that a different move wasmore likely than the one that humans actually made represent

unpredictable random human behavior rather than a failure of the model. In fact, board positions

that resulted in a low log-likelihood for the baseline model were often not predicted well by

the network either, and largely seemed to be human errors in gameplay such as overlooking an

immediate win or making a random move (Figure 3.5, first column). In short, direct comparisons

between the model and data are not particularly informative.
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Figure 3.5: Representative residuals between the baseline model and the data (first column) and the base-
line model and the neural network (second column). For each board position, we report the KL divergence
between the output distributions of the model and the network, as well as the negative log-likelihood of
the humanmove for the model and the network. The user is playing black while the computer opponent is
playing white. Additionally, the red shading indicates the probability distribution of the network’s move
prediction, the open circle indicates the user’s selected move, and the dashed circle indicates the baseline
model’s predicted move.

The neural network, however, provides a viable alternate to compare the baseline model

against. To do so, we used the Kullback–Leibler (KL) divergence as a measure of the difference

between the output distributions of the network and model on any given board position. By pool-

ing information across board positions, the neural network can produce a better estimate of the

difference between the model and the true human policy and can thus give better guidance for

model improvements. Indeed, the largest differences between the baseline model and the neural

network were more interpretable than the largest differences between the baseline model and

the data (Figure 3.5, second column). After sorting the deviations, we manually inspected the

board positions with the highest KL divergence and grouped positions together that shared iden-

tifiable features. Then, for each deviation, we implemented a change to the model to address the

differences between the model and the network based on our understanding of the task and the

model. We then validated that the change indeed altered the model’s predictions for the specific
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board positions that prompted the change. For example, when we added a new component to the

model’s heuristic value function, we passed a number of board positions from the subset of devi-

ations as input, and compared across simulations that the model now predicts the correct move

where the previous iteration did not. Only after this testing procedure did we fit the amended

model to the data. More specifically, we identified three mechanisms that appeared to be shared

across subsets of the largest deviations between the model and the network, each leading to a

new iteration of the baseline model. We implemented these cumulatively: each model contains

all features of the baseline model, any prior extensions, and a new extension.

3.2.3 Testing candidate model improvements

The first model extension consists of a corner bias for the opening move. The neural network

comparison highlighted that users are quite likely to play in the corners in the opening, in par-

ticular in the upper left corner. There is no strategic reason for making these moves, but the

network detects these preferences nonetheless. Since this pattern is especially prevalent on the

first move (Figure B.5D), we added a set of parameters that can give higher value to moves being

considered in each of the corners of the board (Figure 3.4B, left). In terms of implementation, this

mirrors the central tendency feature that is already present in the baseline model. While this was

a fairly incremental model improvement in terms of negative log-likelihood on the test data as

compared to the baseline model (𝑡 = 4.24, 𝑝 = 2.28 · 10−5, Figure 3.4C), it serves as an initial proof

of concept for our methodology.

The second model extension targets defending against opponent threats. In our analysis, we

noticed that the model often overlooks immediate losses in favor of promising offensive moves

elsewhere on the board, while both users and the network do not systematically make these

errors. An example of this is shown in rightmost board in the second column of Figure 3.5.

This is particularly prevalent when the defensive move creates no new features for the player

and the player can create multiple features for themselves closer to the center of the board. The
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explanation for themodel’s behavior is that it assigns relatively high value to the offensive moves,

causing the defensive moves to be pruned from the search tree. Thus, the defensive moves are

never explored, even after the moves that the model expands preferentially are evaluated during

tree search. To fix this deviation, we specify a weight in the heuristic function that explicitly

recognizes immediate opponent threats (Figure 3.4B, middle). With this change, the defensive

moves are now no longer overlooked, as they are almost always valued highly enough to avoid

pruning. As such, the defensive weighting model significantly improved in terms of negative

log-likelihood on the test data from the baseline (𝑡 = 33.48, 𝑝 = 8.85 · 10−246) and opening bias

models (𝑡 = 28.93, 𝑝 = 5.25 · 10−184, Figure 3.4C). This further validates our proposed approach,

as we were able to account for an important, more complicated mechanism that we had no prior

knowledge about beforehand. Without the neural network comparison, it would have been nearly

impossible to detect this detrimental interaction between pruning and the heuristic evaluation in

the end game.

The final model extension adds phantom features. These were inspired by positions in which

users preferentially play to create or defend against features that are already part of the heuristic

function but do not have empty squares contained within the feature to eventually win the game.

An example of this is shown in leftmost and center boards in the second column of Figure 3.5.

We define these in the 3-in-a-row case on the edges of the board, and include them in the model’s

heuristic evaluation (Figure 3.4B, right). When looking at the log-likelihoods across training runs

for the phantom features model, they are fairly similar overall to the defensive weighting model,

with the best parameter set that we use for testing only resulting in a difference of 0.001. This final

extension did not exceed the defensive weighting model’s performance on the test set (𝑡 = −9.87,

𝑝 = 5.54 · 10−23), but still improved from the baseline (𝑡 = 24.13, 𝑝 = 1.32 · 10−128) and opening

bias models (𝑡 = 19.59, 𝑝 = 1.92 · 10−85, Figure 3.4C). Thus, we have no evidence that people use

phantom features in 4-in-a-row.

Treating the defensive weighting model as our best model variant, we show that the model’s
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Figure 3.6: Representative residuals between the defensive weightingmodel and the neural network (first
column) and the phantom features model and the neural network (second column). The format for the
board positions is the same as for Figure 3.5.

predicted log-likelihood per move is typically higher than that of the baseline model, and that

this is particularly true in moves that had a high difference in terms of log-likelihood between

the models (Figure 3.4D). This suggests that our added mechanisms are correctly accounting

for the moves that the baseline model was initially worst at predicting. Finally, we repeated our

analysis of the largest differences between the two best model extensions and the neural network

(Figure 3.6). As expected, this revealed that the residuals for the defensive weighting model still

contain the board positions that inspired our phantom features model, whereas the residuals for

the phantom features model no longer contain these and instead highlight new deviations. This

suggests that the lack of improvement shown by the phantom features model is due to a tradeoff

between moves in which the phantom feature weights are helping and those in which they are

not. In other words, despite accounting for the desired errors that the network is able to correctly

predict, the phantom features model might require an alternate implementation. It is also possible

that an entirely new mechanism altogether could account for these residual board positions. A

full specification of the cognitive models that we tested and their performance is available in
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Table B.2.

3.3 Discussion

In this chapter, we trained deep neural networks to predict human moves in 4-in-a-row using

a large-scale data set. We ensured that these networks estimate a reasonable upper bound on

how well any model can explain human behavior by incrementally scaling up the networks and

validating that any further scaling would result in marginal increases in performance. We then

analyzed the best network, finding that the network captures general trends in human play. This

provided us with a model that was able to predict human decisions more accurately than an

interpretable cognitive model of human planning without requiring manual engineering. We

then explored the positions in which the neural network was more accurate than the baseline

model, leading to several candidate mechanisms for model improvement. Finally, we investigated

the results from three newmodels that added an opening bias, defensive weighting, and phantom

features, analyzing both overall goodness of fit and relative predictability compared to the neural

network. Taken together, these results highlight the advantages of using deep neural networks

as a guide for modeling human planning.

In comparing the neural network with our baseline model, our results suggested mechanisms

that had not been previously considered and improved the model’s performance in 4-in-a-row.

The defensive weighting discovery in particular is a combination of the model’s value function,

forward search algorithm, and pruning mechanism that greatly affected its predictions in certain

crucial positions, but would’ve been very difficult to detect without the neural network. Our

findings also imply that further refinements for the model variants that we present here exist. For

example, the opening bias that people display surely extends beyond just the first move and is

more indicative of a faster, model-free process in the early game. Similarly, the phantom features

could require a more sophisticated weighting of parameters or implementation altogether outside
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of the heuristic function to avoid any tradeoffs with other moves. Additionally, our approach can

facilitate the generation of completely new hypotheses to explain the remaining residuals. An

example in this category is reconsidering the underlying mechanism for the moves that inspired

the phantom featuresmodel. Another unaddressed but consistent residual appeared for situations

when the players did not start playing in the center of the board. In these games, people and the

network tended to continue to play away from the center of the board in close proximity to

existing pieces, while the model preferred building new central features. In sum, our approach

allows for continued discovery and testing of novel mechanisms in the cognitivemodel. However,

for the purpose of this chapter, the existing set of extensions serve to primarily demonstrate the

viability of guided model improvement via deep learning for complex models of human planning.

While our method provides a framework for guided model improvement with neural net-

works, it has several limitations. The first is that the effort of implementing, testing, and ana-

lyzing such networks might not be worth the effort if the task is simple enough. Many of the

tasks that are utilized in psychology studies have a small enough state space that all substantially

different situations can be investigated by hand and/or enough data is available for individual

situations to make deviations between the raw data and model predictions meaningful. In such

tasks, the utility of our approach is greatly reduced. Another limitation is that training neural

networks requires large amounts of data. If less data is available, overfitting becomes a major

concern for flexible architectures and the alternative of using less flexible network architectures

implies biases in the network predictions that need to be justified. Additionally, such networks

are inherently more challenging to train. Standardized tools for streamlining the neural network

fitting process might alleviate these problems by reducing the burden on researchers to construct

and analyze the networks. Collectively, such tool development might be worthwhile for cognitive

science given the recent prominence of neural network-driven model improvement methods, but

we do not provide such tools here. In terms of the method itself, a potential limitation is that we

currently sort the trial-by-trial deviations and identify shared patterns manually. To automate
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the pattern extraction process, we could apply clustering or other machine learning methods to

the board positions showing deviations between the network and the model. This would result

in groups of board positions that we then inspect more closely for shared features. Another al-

ternative might be to have 4-in-a-row “experts” who have played many games and have high

estimated Elo ratings interpret the deviations between the model and neural network to reduce

investigator bias. This mirrors studies in the chess literature [Holding 1989a, 1992; Campitelli

and Gobet 2004], and could generate new ideas for potential model improvements.

What do the mechanisms that we identify from the deviations between the model and neural

network tell us about planning and human cognition? One takeaway is that people have inherent

biases, meaning that they consistently prefer one out of many equivalent solutions to problems

when there is no rational reason to do so. Humans display such systematic biases in many tasks

[Griffiths et al. 2010], and the literature on these biases and how to model them may be informa-

tive to structure the biases players show in 4-in-a-row and while planning more generally. Our

model extensions also suggest that people’s heuristic functions may be more sophisticated than a

simple sum of features, accounting for complex tradeoffs between pieces on the board depending

on the context of the board position. Further, we observed in earlier studies that individuals seem

to evaluate positions differently, as feature weights vary when the cognitive model is fit to each

participant. Adjusting the heuristic function to be more human-like and account for nuanced

individual differences is a challenge, but the size of the data set paired with the neural network’s

predictions can guide this process. While these specific features of gameplay are tied to 4-in-a-

row, they point to the interaction between heuristic evaluations and forward search, and how

either of these mechanisms may change depending on the individual and context they are placed

in. These are fundamental aspects of human planning, and uncovering more nuanced intuitions

for how the mind navigates this process may provide principles that generalize across planning

tasks.

More broadly, our work provides a framework for model construction that makes use of both
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deep neural networks and large-scale experiments. Cognitive science as a discipline has trended

towards massive data sets collected via online studies, in part to obtain rich data in participants’

real-world environments and clarify whether results derived from constrained laboratory tasks

generalize. To this end, leveraging methods from machine learning to aid in model development

is a particularly important undertaking for the field. Our approach is most useful in complex tasks

where comparing a model directly with human decisions is noisy due to few repetitions of any

particular state. In our case, both of the previous criteria were satisfied, albeit with a cognitive

model that has already undergone rigorous testing against alternatives in previous work. It is

reasonable to assume that the model refinement process would be greatly expedited in situations

where tedious manual adjustments derived from intuition for the task can be avoided altogether.

Therefore, we argue that this method will be valuable in the development of future cognitive

models of planning as well as other complex human behavior.
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4 | Theory

From spatial navigation to organizational strategy to playing games like chess and Go, planning

is a fundamental mechanism underlying human intelligence that involves the mental simulation

of future actions and their consequences in order to make a decision. Planning problems have

typically been formalized as search over a decision tree in both cognitive science [Miller and

Venditto 2021; Huys et al. 2015; van Opheusden et al. 2023] and artificial intelligence [Shannon

1950; Silver et al. 2016]. In such a scheme, an agent builds a tree of possible future trajectories

where every decision is represented by a branching point (Figure 4.1A). The agent then gains

information by traversing the decision tree, which is used to approximate the long-term expected

reward of each currently available action (Figure 4.1B). Tree search algorithms generally lead

to better decisions that may have been overlooked without planning, but can be costly to run.

Even with a small cost per unit of time or planning iteration, real-world tasks involve too many

possible sequences to extensively evaluate each considering the breadth and depth of the trees

that an agent would need to construct.

Therefore, a growing body of literature has focused on developing solutions that humans

might employ for estimating the values of choices while simultaneously mitigating the compu-

tational costs associated with planning. One plausible approach is to introduce heuristics that

circumvent the intractability of an exponentially growing search tree. Such heuristics include

pruning initially unpromising courses of action [Huys et al. 2012], limiting the depth of planning

[Snider et al. 2015; Éltető and Dayan 2023], relying on the uncertainty or accuracy of forward
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search and model-free reinforcement learning methods in tandem [Daw et al. 2011b; Kool et al.

2017; Hamrick et al. 2019], or leveraging simulated experience to further expedite the transition

from goal-directed to habitual behavior [Dasgupta et al. 2018]. Meanwhile, simpler choice mod-

els of human sequential decision-making often do not explore the tradeoffs between the costs

of planning and decision quality [Solway and Botvinick 2015; Tajima et al. 2019]. While each of

these models provides insight into how people plan efficiently, the selected heuristics are gener-

ated via researcher intuition. That is to say, they do not provide a formal analysis of why humans

might use such heuristics during planning that generalizes across environments.

More recently, a few notable exceptions to the heuristics-driven approach havemade progress

on providing normative accounts of human planning. These accounts optimize the metalevel

problem, which is to determine in which direction the search tree should be expanded. The plan-

until-habit scheme computes the value of information gained by planning in a principled manner,

reducing the number of search iterations by relying on a habitual system to estimate values at

the frontier of the decision tree [Sezener et al. 2019]. This results in an expansion metric that is

cheap to compute, but relies on cached values that summarize past experiences. Such a method

may not scale well to complex tasks where an agent almost exclusively encounters unique states,

thus hindering the development of informative habits. An alternative is to frame the problem as

one of resource rationality, where the agent has to minimize the cognitive operations required to

make a plan while maximizing the expected utility of executing that plan [Callaway et al. 2022b].

This model is applied in small state space, deterministic environments where optimal strategies

can be identified and people are encouraged to fully plan before taking any actions. Moreover,

the interaction between past experiences and planning is not explicitly defined. Despite both

of these efforts, the mechanisms by which people are able to approximate the values associated

with potential plans in real time is not fully understood and requires a thorough mathematical

derivation. In other words, a theory that explains the conditions under which people will plan

while considering past experiences and scaling to large state spaces is needed.
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Figure 4.1: Comparing planning and meta-planning. (A) A planning problem, where nodes represent
states and arrows possible actions that an agent could make. The decision is whether to make action 𝑎1
or 𝑎2, each of which will ultimately lead to different future rewards. (B) Planning as tree search, where
candidate actions are iteratively simulated by expanding from the current state. The values of future
states (𝑉 ) are approximated by a heuristic that informs which action will lead to the highest expected
reward. In environments with many states, the tree quickly becomes costly to exhaustively search over.
(C) Meta-planning, which aims to reduce the costs associated with planning by guiding the metalevel
decision of selectingwhich action to plan for. In ourmodel, this is accomplished by framing a simulation as
ultimately providing more information about the true value of an available action and quickly computing
the expected utility gain (𝑈 ) associated with making that measurement.

In this work, we derive an abstracted model of meta-planning, or determining which action

to plan for, formalized via Bayesian inference. The key insight underlying the model is that it

sacrifices the structure of a tree search algorithm in favor of a simpler, task-general statistical

description that estimates the effects of planning. This is achieved by framing planning as a pro-

cess for gaining noisy information about the currently available actions (Figure 4.1C). With this

approach, we can precisely control parameters in the model and simulate the conditions under

which people plan in a principled way that generalizes to real planning problems. Under our

framework, the agent considers which action to plan for on each iteration of search by comput-

ing the expected value of planning for each action while holding the remaining actions constant.

Our approach is designed to facilitate online decision-making, as the metalevel algorithm is sig-

nificantly less expensive than running a full tree search and can in turn be adapted to guide plan-
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ning. We show that the meta-planner makes intuitive predictions in a variety of environments,

highlighting the importance of the gap between value estimates, retrospective information, and

uncertainty while replicating concepts from the planning literature. We also compare our model

directly against canonical search methods, namely best-first and breadth-first search, showing

how it differs from these in selecting high value choices. Finally, we apply the model to a com-

plex planning task where it captures human response time trends that previous models cannot

account for. On the basis of these results, we claim that people may indeed be reasoning about

which actions to plan for using principles suggested by our model as a means of reducing the

computational costs of thinking ahead.

4.1 Model

The overarching goal of any planning procedure is to inform which action should be selected in

the present. From a metacognitive perspective, an agent might ask “is planning worthwhile, and

if so in which direction?” when it becomes intractable to evaluate every sequence of possible ac-

tions. Our Bayesian meta-planner answers this question, providing a decision rule over whether

and in which direction to plan. Here we outline the underlying assumptions behind the model

along with the set of equations needed to provide a general intuition for its function. A more

detailed specification and derivation of the model is available in Appendix C.2.

Given a state 𝑠 and a set of actions 𝑎1, ..., 𝑎𝑁 , we assume that the agent has the option of

executing a tree search policy 𝜋 . Doing so is computationally expensive, but informative. We

also assume that a state-action pair has a theoretical long-running expected reward under 𝜋 ,

𝑄𝑎 . Since this value is not known, we take an inference view where the agent tries to build a

probability distribution over each 𝑄𝑎 . As the agent can only consider the effects of planning

for a single action at a time, the problem is deciding which action, if any, to select and better

approximate. Our model uses Bayesian inference to guide this decision according to the expected
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Figure 4.2: Formalizing Bayesian meta-planning. (A) The agent receives noisy measurements of the
underlying𝑄-value for a given state-action pair. These measurements can come from retrospective expe-
rience (light purple) or a prospective planner (dark purple), each with a specific mean at 𝑄𝑎 and variance
𝜎2. (B) The posterior for each action combines retrospective and prospective information (green). This is
the current probability distribution over each hypothesized 𝑄𝑎 . (C) The maximum of posterior means𝑀 ,
which is the highest-value choice that can be made without any additional sampling. (D) The inference
process, where the agent computes the value of each action conditioned on sampling a specific action: this
results in no change in the value of the mean for actions that aren’t sampled (yellow), and a distribution
over the mean for the action that is sampled (light red). To combine across actions 𝑁 , the agent computes
the max distribution over the possible means (which now has 𝑁 − 1 point estimates and a single distri-
bution) of each action given the new sample (dark red), and 𝑈𝑎 is the difference between the expected
value of this max distribution and 𝑀 . This process is repeated for all possible actions to sample. Finally,
an update rule is used to decide whether it is worthwhile to keep planning. If the maximum utility across
possible samples is less than a fixed cost 𝑐 , then no more planning is necessary. Otherwise, the agent
samples the action that maximizes utility (by, for example, executing a tree search policy) and updates
the posterior for that action accordingly.
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utility of making an additional measurement of each 𝑄𝑎 . We subsequently refer to the process

of gaining new measurements within the context of the meta-planner as sampling, to reiterate

the fact that there is no tree structure within the model. In practice, the samples that the meta-

planner utilizes can come from a prospective planner, but we remain agnostic to the form that

algorithm should take. The main idea is that planning for any action results in a better estimate

of that action’s underlying value, and the meta-planner seeks to maximize utility gain relative to

the goal of ultimately selecting the highest-valued action.

The agent must iterate over the available actions and compute the value of each action con-

ditioned on sampling a single action. To do this, we assume that the true 𝑄-value for an action

follows a distribution 𝑝 (𝑄𝑎) and that new measurements of𝑄𝑎 are noisy and independent. These

measurements can come from two sources: previous experiences, denoted by qretro,𝑎 and captured

by the retrospective likelihood L(𝑄𝑎; qretro,𝑎), and planning, denoted by q𝑎 and captured by the

prospective likelihood L(𝑄𝑎; q𝑎). As such, we are implicitly framing the outcome of both retro-

spective experiences and prospective planning as additional noisy measurements of each action’s

value (Figure 4.2A). Therefore, a key concept of this statistical model is that an iteration of a tree

search algorithm working on a branch that starts with action 𝑎 produces a new, independent

measurement of 𝑄𝑎 . The retrospective and prospective likelihoods are a product of the individ-

ual likelihoods associated with each measurement, and the posterior is the normalized product

of a prior and two likelihoods that we assume to be independent (Figure 4.2B). We compute the

posterior for each action with all currently available information:

𝑝 (𝑄𝑎 |qretro,𝑎, q𝑎) ∝ 𝑝 (𝑄𝑎)L(𝑄𝑎; qretro,𝑎)L(𝑄𝑎; q𝑎) . (4.1)

Since the meta-planner computes the utility gained from an additional planning operation, we

define the value of the state before making an additional measurement as the maximum of pos-

terior means (𝑀) across all actions (Figure 4.2C). Next, we consider the future posterior if the
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agent were to sample and receive another measurement for 𝑎, 𝑞′𝑎 , which is unknown and has to

be marginalized over. Conceptually, we are interested in the distribution over the prospective

measurement one step into the future (Figure 4.2D). We compute the future distribution for 𝑎 by

marginalizing over the current possible values of 𝑄𝑎:

𝑝 (𝑞′𝑎 |qretro,𝑎, q𝑎) =
∫

𝑝 (𝑞′𝑎 |𝑄)𝑝 (𝑄 |qretro,𝑎, q𝑎)𝑑𝑄𝑎 . (4.2)

To combine across 𝑁 total actions, we need to compute the expected utility of making this ad-

ditional measurement. Importantly, the agent can only consider sampling from a single action

at a time, so the expected value of the remaining actions is known exactly. This expected value

is another maximum of posterior means, this time after making the additional measurement of

action 𝑎:

𝑀′𝑎 ≡ max
(
E

[
𝑄𝑎 |qretro,𝑎, q𝑎, 𝑞′𝑎

]
,max
𝑏≠𝑎
E

[
𝑄𝑏 |qretro,𝑏, q𝑏

] )
. (4.3)

Note that this is a random variable because 𝑞′𝑎 is unknown to the agent. However, we can take the

expected value E𝑞′𝑎 [𝑀′𝑎]. Within our framework, the reason why planning is beneficial is that the

expected value of a maximum is greater than the maximum of the expected values. The expected

utility of making another measurement of action 𝑎, which we call the utility of sampling, is then:

𝑈𝑎 = E𝑞′𝑎 [𝑀
′
𝑎] −𝑀. (4.4)

This computation has to be repeated across all possible actions to sample. Then, we propose that

the agent chooses to sample if the maximal 𝑈𝑎 exceeds a fixed cost of planning 𝑐 . A new noisy

measurement of the action that maximizes𝑈𝑎 is generated by, for example, running a tree search

policy, and in turn is used to calculate the updated posterior for the sampled action. All other

actions keep the same posterior. At this point, the meta-planner can use the updated values to

repeat the inference process on the next iteration and decide if it is worth continuing to plan.
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4.2 Results

4.2.1 Model simulations reveal principles for thinking ahead

In simulations, we ran the model forward to validate that it makes intuitive predictions about

when to plan. The primary goal of this section is to characterize the underlying principles that

drive the meta-planner to continue sampling. We first considered the case where the agent has no

prior experience and relies purely on prospective evaluations to decide how far into the future to

plan. This mimics real-world planning environments where an agent has uninformed priors over

their retrospective system, such as in novel tasks or tasks in which states may not repeat often.

As a proof of concept, we first verified that the utility of sampling decreases exponentially as the

number of prospective samples increases (Figure 4.3A). This occurs regardless of the number of

alternatives, and intuitively reflects that sampling is less valuable the more samples an agent has

already taken. Moving forward, we implement a cost per evaluation and report results in terms of

the probability that the meta-planner will sample further. In Figure C.1A we computed sampling

probability across a wide variety of costs, showing that the utility function shifts as more samples

are taken.

One of the primary factors driving the shape of this utility curve is the gap in value between

the top two actions [Farahmand 2011; Bellemare et al. 2016]. Suppose that the agent’s objective

is to decide between two actions. If the gap between the values of these two actions is small,

should the agent plan further ahead in hopes of determining which action is actually better? Or,

should the agent avoid wasting resources planning, since it will be unclear which action is best

regardless? And conversely, if the gap between two evaluations is large, should the agent plan

more or less? In Figure 4.3B, we show that as the number of actions increases, the distribution of

the difference between the top two actions, which we refer to as the action gap, becomes more

right-skewed. In other words, small action gaps are more common when there are more actions
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Figure 4.3: Meta-planner simulations. (A) The utility of sampling for 2 actions (light red), 5 actions
(red), and 10 actions (dark red) as a function of the number of prospective samples (𝑛) made by the meta-
planner. Panels (B)-(D) use the same values for 𝑁 , or number of actions. (B) Probability distributions
for the gap in value between the top two actions. The cost used is fixed to 𝑐 = 0.1 unless otherwise
stated. (C) Probability of sampling as a function of the number of prospective samples made by the meta-
planner, split into low (0 − 0.5, light blue), middle (0.5 − 1, blue), and high (1 − 1.5, dark blue) gap values.
(D) Probability of sampling as a function of the number of retrospective measurements per action. (E)
Probability of sampling for 5 actions as a function of retrospective and prospective uncertainty (𝑐 = 0.05).

to consider, and the size of the top gap becomes more varied with fewer alternatives. Figure 4.3C

then investigates the relationship between top gap size and probability of sampling: sampling

is more beneficial when the action gap is smaller, and this effect occurs more often and is more

pronounced with a higher number of alternatives. In Figure C.1B, we show the entire range of

sampling probabilities for different combinations of action gaps and number of actions, as well

as the frequency of each. In Figure C.2 we visualize the probability of sampling for different
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numbers of alternatives and top gap sizes, highlighting how the shape of these curves change

over time.

Next, we examined environments where the agent does have prior experience. In principle,

planning should be modulated by the total amount of retrospective experience accumulated by

the agent as well as the uncertainty of those estimates. These correlate directly to well-studied

mechanisms in the planning literature: the transition from model-based to model-free control

over time [Dickinson 1985] and uncertainty-based arbitration between prospective and retro-

spective systems [Daw et al. 2005]. We simulated total experience by using a variable Poisson

rate (𝜆) to determine the average number of past measurements for each action. Environments

where the agent has more retrospective experience resulted in lower probabilities for sampling

another measurement, once again irrespective of the number of actions that the agent considers

(Figure 4.3D). The rationale behind this is that environments with low amounts of retrospective

information require more planning compared to when the agent solely relies on prospection,

and the probability of sampling decreases as the agent gains more experience. In these cases,

the agent can spend less resources planning and instead relies more heavily on its cost-effective

retrospective experiences. We then directly varied the amount of uncertainty for both the retro-

spective and prospective measurements, finding that increased uncertainty with either or both

sources of information leads to higher sampling probabilities (Figure 4.3E). There is, however,

an asymmetry where high amounts of prospective uncertainty made sampling no longer worth-

while. The interpretation is that planning is generally beneficial in gaining high-value estimates

under uncertainty, but if the uncertainty attached to prospective measurements is too high then

it is no longer worthwhile to obtain these costly measurements.

4.2.2 Model comparison with canonical search algorithms

Beyond looking at the conditions under which the meta-planner samples, we are interested in the

actions that it tends to sample from and how those compare with canonical algorithms for tree
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Figure 4.4: Comparing the meta-planner with best-first and breadth-first search. (A) The fraction of
samples made by the meta-planner for each action rank. The number of actions used is set to 𝑁 = 5
unless otherwise stated. (B) The utility of sampling as a function of the gap between the top two actions
for different action ranks. (C) The utility of sampling at each step of the planning process, for the meta-
planner and the highest-ranked action that would be favored by a best-first search algorithm. (D) Choice
value at 5 actions (left) and 20 actions (right) as a function of the number of prospective samples for the
meta-planner (blue), best-first search (gray), and breadth-first search (orange).

search. In this section, we relate our model to best-first and breadth-first search, as these are sen-

sible rules for expansion that have been studied in the context of human planning [Moreno-Bote

et al. 2020; Mastrogiuseppe andMoreno-Bote 2022]. Perhaps the simplest method for comparison

is to examine the distribution of samples that the model makes conditioned on each action’s rank,

where the rank of an action corresponds to its sorted order in terms of the model’s expected value

for the action. Themeta-plannermost often sampled from the second highest-ranked action, with

a decreasing number of samples for actions ranked beneath it (Figure 4.4A). This contrasts dras-

tically with best-first search, which would always sample from the highest-ranked action, and
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breadth-first search, which would sample uniformly across actions. The intuition underlying

this distribution is that the meta-planner is framed in terms of utility gain, and thus will select

the highest-ranked action when it is no longer worthwhile to sample. That is to say, the model is

most often interested in ascertaining whether the value of the second highest-ranked action will

overtake the value of the highest-ranked action and therefore be selected. The same logic can be

applied to the remaining actions, with the highest-ranked action only being sampled from mini-

mally to reduce uncertainty about its value. This is closely tied to the previous action gap result,

and we plot the utility of sampling as a function of this gap (Figure 4.4B). This supports the pre-

vious explanation, as higher-ranked actions are usually sampled with low gaps where additional

measurements are valuable and may reveal which action is actually better. Alternatively, lower-

ranked actions are typically sampled with high gaps where new information is less valuable and

the model samples more broadly since the best action is unlikely to change.

To more directly compare the meta-planner with best-first search, we tracked the develop-

ment of the utility of sampling within the meta-planner’s simulations (Figure 4.4C). In general,

the action that the meta-planner sampled from had higher utility than the highest-ranked action

that a best-first search algorithm would select. As more samples are taken and the true value

of each action is more closely approximated, the difference between the two selection rules de-

creased. Finally, we computed choice value, or the value of the highest-ranked action if no more

samples were to be taken, for our model alongside both best-first and breadth-first search (Figure

4.4D). The distinction between choice value and value of sampling is that rather than the util-

ity gained from receiving another measurement, we are now interested in the value associated

with the choice the agent would actually make as well as how that value changes while sampling

according to different models. We found that, regardless of the number of alternatives, our meta-

planner consistently makes the highest value choices while best-first search does reasonably well

but plateaus earlier. Meanwhile, breadth-first search performs well with few actions that allow it

to gain many samples for every action, but scales poorly as the number of alternatives increases.
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Figure 4.5: Human prospection is driven by the action gap. (A) The correlation between move number
and gap between the top two heuristic evaluations given by the planning model’s initial evaluation for 100
users in the data set. (B) Response times in logarithmic space as a function of the initial gap between the
top two heuristic evaluations given by the planning model. The data (circles) are shown for each position
across all users conditioned on move number along with a linear regression (line).

4.2.3 Application to complex planning

Our simulation results highlighted a set of principles that are important for determining whether

and in which direction an agent thinks ahead. Namely, these are the gap in value between the

top two actions, retrospective experience, and uncertainty. To validate that the meta-planner’s

predictions align with human behavior, we conducted a set of analyses in 4-in-a-row using our

large-scale data set from Section 2.1.

We first wanted to replicate the action gap predictions from Figure 4.3B-C in 4-in-a-row. Since

the action gap is an internal quantity that is not accessible via simply analyzing behavior, we used

the cognitive model of human planning to approximate the gap. In places we utilized this plan-

ning model, we used the standard implementation from Section 2.2. To specifically investigate

the gap, we computed the difference in the top two initial heuristic evaluations for every board

position that each user encountered. The model assigns a node a value of positive or negative

infinity if the board contains a win or loss for the current player, so we excluded positions with

such nodes from our analysis. As a sanity check, we correlated this value difference with move

number in the game (Figure 4.5A). This correlation should be positive, as move number within
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the game has an inverse relationship to number of alternatives, and a lower number of alter-

natives indicates a larger gap. We did indeed observe a positive correlation across all users in

the data set, indicating that the heuristic gap estimated by this model of planning is a reason-

able proxy for the gap in utility values used by the meta-planner. Then, we were interested in

the correlation between the amount of planning done by each user and the gap across different

move numbers. For this, we used human response times as an indirect measure as is standard

in the study of human planning [Russek et al. 2022]. Figure 4.5B shows a decreasing trend in

response times (in logarithmic space) across all positions and users in the data as a function of

gap (move 12: 𝜌 = −0.197, 𝑝 = 6.269 · 10−10; move 18: 𝜌 = −0.283, 𝑝 = 7.651 · 10−8; move 24:

𝜌 = −0.328, 𝑝 = 3.586 · 10−5). We repeated this analysis for 3 different move numbers that tile the

middle game, finding that the correlation is stronger further into gameplay. This validates one of

the meta-planner’s predictions, which is that people think less when the value of the best action

is significantly larger than the second-best alternative.

Next, we wanted to examine the effects of retrospection on response times in 4-in-a-row as

suggested by the meta-planner. A motivating observation is that while people’s response times

correlate on individual trials with the number of planning model iterations, they differ consid-

erably on average in early gameplay (Figure 4.6A). Given the importance of retrospection in the

meta-planner, a potential mechanism to explain this mismatch is that in situations where the

board is fairly empty and no player can immediately win the game, there is a faster retrospective

process that takes place before prospective planning begins. This also explains why response

time trends in the middle and late game roughly follow the planning model’s predictions. To test

that the meta-planner has the capacity to predict this trend qualitatively, we compared human

response times across the entire data set with meta-planner simulations (Figure 4.6B). To mimic

human experience in this task, we denoted number of past experiences as an exponential decay

function across move number. Then, we simulated the number of samples taken to termination

with fixed parameters with the number of alternatives dictated by the number of pieces of on

75



FD

BA C

E

Figure 4.6: Human response times are driven by retrospection and uncertainty. (A) Average human
response times (black) and number of planning model iterations (gray) taken to make a move throughout
gameplay for 100 users in the data set. Response times were normalized via z-scoring here and in panels
(B) and (C). (B) Average human response times (black) and number of samples the meta-planner makes
(blue) throughout gameplay. The meta-planner is simulated with retrospective experience following a
decreasing exponential function with move number. All subsequent panels are for all users in the data
set unless otherwise stated. (C) Average human response times (black) and number of samples the meta-
planner makes (blue) on the third move of gameplay as a function of the number of past experiences.
(D) Average human response times across all moves in the data set as a function of the number of games
played. This analysis was limited to the 34, 810 users who played at least 50 total games. Error bars and
shading denote s.e.m. here and in subsequent panels. (E) The average decrease in response times from the
first game to the 50th game as a function of the phase of gameplay. The early game is defined as moves
1 to 5, the middle game moves 6 to 30, and the late game moves 31 to 36. The analysis was limited to the
same subset of users as in (D). (F) Average response times on the third move of gameplay as a function
of repeated 2-piece board states (blue), and the average response times of 1, 000 randomly sampled users
that had previously played the same number of games (red).

the board. Encouragingly, our meta-planner is then able to correctly account for the shape of

people’s response time curves, something that it isn’t be able to do without retrospection at all

(Figure C.3A). Another limitation of the planning model in 4-in-a-row is that it is purely prospec-

tive, and thus cannot account for decreased response times as a function of experience. In Figure

4.6C, we show that human third move response times decrease with number of past experiences

and are indistinguishable from the meta-planner’s predictions. This also occurs on the opening
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move, which users encounter every game (Figure C.3B).

Moving beyond qualitative descriptions of human response times using the meta-planner,

we examined the concept of uncertainty in human decisions. Specifically, we hypothesized that

gaining retrospective experience reduces uncertainty about the values of specific actions, and this

should lead to differential response times in positions where retrospective experience is more

readily available. We analyzed the subset of 34, 810 users who had played at least 50 games,

verifying that their overall response times reliably decreased and then plateaued in this extended

experience horizon (Figure 2.1D). Then, we computed the decrease in average response times

from users’ first game to their 50th, split into early, middle, and late game moves (Figure 4.6E).

This decrease was much greater in the early game compared to the middle game (𝑡 = 3.065,

𝑝 = 0.009), suggesting that the first few moves where board positions are more likely to repeat

drive response times downwith increased retrospection. There is also a significant effect between

themiddle and late gamewhich is not captured by retrospection (𝑡 = −2.430, 𝑝 = 0.030), but rather

by the fact that uncertainty is low in the last few moves of a game that will almost certainly

result in a draw. Furthermore, third move response times decreased significantly when users

encountered repeated 2-piece board states (Figure 4.6E). This could be a confounded result, since

on average users move faster after playingmultiple games regardless of which states occurred. To

address this, we ran a control in which we sampled the average response times of other users that

had played the same number of games, explaining some of the effect but not all. Together, these

results provide further evidence for the meta-planner’s predictions, namely that prior experience

and uncertainty play a functional role in decreasing the amount of planning that people do. Figure

C.3C-D provide additional evidence for retrospective response times in 4-in-a-row, and Figure C.4

shows how people’s actions in the early game are influenced by game outcomes.
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4.3 Discussion

In this chapter, we introduced a normative model for meta-planning based on Bayesian inference

that iteratively computes the value of sampling per action and decides whether and in which

direction it is informative to plan. Themodel is abstracted in the sense that it frames tree search as

gathering additional noisy measurements about the true value of each currently available action,

which in turn allows us to systematically manipulate parameters to derive principles for thinking

ahead. We showed that this model makes intuitive predictions about the probability of sampling

over the course of planning as a function of different parameters. Then, we investigated how the

value of the actions that the meta-planner samples compared with those explored by canonical

search algorithms. Finally, we showed that the concepts underlying the model’s behavior can

be applied to a complex planning task and account for previously unexplained trends in human

response times. Ultimately, our framework provides a mathematically rigorous and cost effective

method for guiding tree search that maximizes expected reward.

We must also consider how this framework might interact with a prospective planner in real

tasks, and if there is any evidence for meta-planning in the brain. In this work we deliberately

introduced the theory and used it to generate testable predictions that we find evidence for in

human data. This simplicity is a strength of the model in that it allows us to precisely control the

meta-planner’s mathematical properties, but also a limitation in its applicability. In future work,

we hope to extend the framework to fit behavior directly. The first step towards this could be to

investigate how our model scales to problems where the decision tree structure is preserved, to

get an intuition for how the model’s predictions deal with such environments. In terms of model

fitting, one viable approach is to extend an existing planning algorithm with concepts from the

meta-planner. For example, in 4-in-a-row we could implement more sophisticated stopping and

expansion rules to replace the simple heuristics that are currently being used. A search algorithm

that utilizes the action gap, number of alternatives, retrospective information, and uncertainty to
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make more informed decisions about when to plan and which actions to plan for would hopefully

better fit human choices and predict response times. Since we have conceptualized this as a

metacognitive algorithm, another natural extension is that an agent actually uses a meta-planner

to quickly make judgements about whether to run another iteration of a prospective algorithm.

In this case, the mind would actually be implementing such an algorithm alongside decision tree

search. In practice, this approach might require an amended meta-planner with task-specific

features and structure within the model’s evaluations. In either case, adapting the meta-planner

to well-characterized planning tasks as well as novel, complex tasks like the one used throughout

this work is a challenge that we leave for future work.

One assumption that we make is that meta-planning can be framed as Bayesian information

sampling. As such, the method by which our model approximates the effects of search can be

linked to a few different fields. Perhaps the most obvious is the resemblance to the information

sampling literature, where the objective is to choose the single most rewarding given a number

of alternatives. The information that is sampled can be perceptual or value-based, and there is

evidence that planning and information seeking share similar neural mechanisms [Hunt et al.

2021]. More recently, related work has claimed that simple decisions are made by integrating

noisy evidence that is sampled over time in a Bayesian manner [Callaway et al. 2021; Jang et al.

2021]. Our framework can be viewed as an approximation to planning via an optimal information

sampling algorithm, and shares many features with these models. Conceptually, the main differ-

ence is in domain application, as prior work has explained fixation data in choice tasks with few

alternatives while our model aims to derive intuitive rules to guide sequential decision-making.

This is particularly relevant to the form that our model will take when interacting with a forward

search algorithm in complex planning tasks.

Another connection is that our abstracted framing of planning can be interpreted as a multi-

armed bandit (MAB). In such problems, people must choose between a set of alternatives that

each have unknown reward in order to maximize total expected reward. This kind of task is
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typically used to study sequential decision-making under uncertainty and captures the tension

between exploration and exploitation [Gershman 2018]. Historically, MAB tasks have been stud-

ied across many domains including statistics [Gittins 1979; Auer et al. 2002; Chapelle and Li 2011],

reinforcement learning [Kaelbling et al. 1996; Sutton and Barto 2018], and psychology and neuro-

science [Daw et al. 2006; Cohen et al. 2007]. Further, Bayesian analyses of bandit problems exist,

albeit typically providing a closed-form solution [Steyvers et al. 2009]. Since optimal solutions

are intractable for humans to compute, it is thought that people employ heuristics for directed

search [Lee et al. 2011; Payzan-LeNestour and Bossaerts 2011; Zhang and Yu 2013; Wilson et al.

2014]. However, human reasoning in a MAB and planning differ in that the goal in the former is

to maximize the sum of rewards obtained over time, while in the latter all that matters is the value

of the decision made after all simulations are done. Crucially, MAB tasks provide real rewards

at every step, while planning is an internal process used to determine a single rewarding action.

Our framework is specifically built to focus solely on estimating high-value decisions rather than

the tradeoff between exploration and exploitation.

A final relationship with our model of meta-planning can be made to Monte Carlo tree search

(MCTS). As a reminder, MCTS is a heuristic search algorithm that incrementally constructs a

search tree in promising regions of the state space to approximate state-action values [Browne

et al. 2012]. MCTS also employs a tree policy, the most popular of which is an application of a

MAB called UCT. UCB1 assigns scores to actions using their expected value, number of visits, and

an exploration bonus, and UCT applies this recursively to action selection in decision trees. Our

meta-planner differs fromMCTS in two fundamental ways. The first is in how the values of states

and actions are computed, which for MCTS is based on rollouts guided by the tree policy. In our

case, this is approximated via Bayesian inference over the effects of another prospective sample

combined with retrospective information. Second, as with MAB problems, UCT’s focus is to

ensure high net simulated value across actions, often overlooking expansions with low rewards

even though they might result in a better final decision [Tolpin and Shimony 2012; Hay et al.
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2014]. In sum, simulating further for specific actions is only valuable while planning because it

helps select the best action, something that our meta-planner explicitly takes into account.

Over the past few years, our collective knowledge of human planning has progressed signif-

icantly. Beyond the shift from heuristics that reduce the costs of building large decision trees to

normative models of how people think ahead, recent work has uncovered how planning depth

changes with expertise [van Opheusden et al. 2023], the link between hippocampal replay and

future decisions [Mattar and Daw 2018], task decomposition and computational representations

while planning [Ho et al. 2022a; Correa et al. 2023], and machine learning methods for improving

models of planning [Kuperwajs et al. 2023]. These findings, coupled with the movement towards

naturalistic tasks and large-scale data sets in psychology [Schulz et al. 2019; Steyvers and Schafer

2020; Brändle et al. 2022], promise to eventually yield more precise characterizations of the cog-

nitive processes underlying planning. In our view, a normative approach to derive principles for

how people plan is a meaningful contribution towards this cause.
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5 | Learning and motivation

Learning in the real world is influenced by many disparate factors. One particularly natural re-

lationship to consider is the one between learning, measured by performance in a given task,

and motivation, measured by engagement with the same task. For example, imagine a graduate

student whose scientific skills develop as they take coursework, conduct more research, and re-

ceive mentorship from their advisor. Throughout this process, having a paper or grant accepted

might increase their desire to pursue an academic career, while rejection might lead to them

dropping out of their program altogether. In practice, the directionality of this relationship is

difficult to characterize irrespective of the task at hand. Do people drop out because of changes

in performance? Or alternatively, do people who are closer to quitting already exhibit drops in

performance that are driven by a loss of motivation?

To begin to understand how performance and engagement are functionally related, we can

turn to two sets of literature within cognitive science: skill acquisition and intrinsic motivation.

Early work on skill acquisition comes from modeling efforts that seek to define simple rules

for learning as a function of practice, such as power and exponential laws [Newell et al. 1980;

Heathcote et al. 2000]. Recently, more nuanced views of learning have emerged that emphasize

not only practice, but also grit and perseverance as methods of improving performance [Stafford

andDewar 2014; Duckworth andGross 2014]. Note that these underlyingmechanisms are already

inevitably tied to task engagement despite not explicitly taking it into account. Additionally, both

applied and theoretical accounts of self-regulated learning are active areas of research where the
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emphasis is often on what strategies people employ to select useful information that supports

their own learning [Gureckis and Markant 2012; Lieder and Griffiths 2017]. While this is an

important aspect of human cognition in environments where learners exert considerable control

over aspects of their learning requirements, this remains a categorically different question than

the factors that determine participation and influence performance. Online platforms have also

established themselves as a viable empirical tool for investigating skill learning over the past few

years [Donner and Hardy 2015; Huang et al. 2017].

Meanwhile, work on intrinsic motivation provides conflicting evidence. On the one hand it

is known that moderate challenges encourage people to continue with a task, while extremely

easy or difficult tasks reduce motivation [Schmidhuber 2010; Geana et al. 2016; Ten et al. 2020].

Other studies have investigated the peak-end rule, which is a psychological heuristic observing

that people’s retrospective assessment of an experience is strongly influenced by the intensity of

the peak and final moments of that experience [Miron-Shatz 2009; Cockburn et al. 2015]. Since

these events are formative for users’ perceptions of a task, they may be particularly indicative

of motivation levels throughout a task as well. Work on human gameplay lies somewhere in

between these extremes, finding that higher rewards impact a desire to continue while peak and

end experiences can have varied effects, one of which is to bias people’s assessments of both

game difficulty and enjoyment [Farzan et al. 2008; Gutwin et al. 2016]. Finally, a recent paper

designed a novel task to study how people decide when to persist and when to quit, finding that

people largely behave in accordance with the optimal strategy [Sukhov et al. 2023]. This strat-

egy explores a relatively small number of options before settling on a sufficiently good option,

abandoning an option if the number of remaining trials exceeds a performance threshold. To-

gether, these provide a broad spectrum of potential factors that might cause people to engage

more or less with a task, from intermediate difficulties over the course of the task to very specific

experiences and reward structures.

Given that disentangling the relationship between learning and motivation is a major chal-
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lenge, joint analyses of these cognitive processes are needed. Recently, a number of modeling

efforts have been proposed to quantify learning and dropout simultaneously. One approach in

this domain is to investigate performance and practice, finding correlations between the two as

well as evidence for especially large improvements at the end of a session, or peak-end effects, and

lower quitting rates with score drops, or persistence effects [Agarwal et al. 2017]. This study used

𝜖-machines, a type of hidden Markov model, to describe the optimal transitions between states

in terms of human performance and quitting behavior. Alternatively, a related paper leveraged

another established model class, specifically Bayesian geometric models with a hierarchical im-

plementation, to model the distribution of how many items people collect in real-world decision

tasks before they quit [Okada et al. 2018]. A final study provides an empirical investigation of

the effects of participation and withdrawal on aggregated learning functions in the context of an

online training platforming where people make voluntary choices about participation [Steyvers

and Benjamin 2019]. However, these accounts are only a starting point for describing the de-

pendencies between learning and motivation, and the field needs rich data sets and well-founded

process models to gain a deeper understanding of how this interplay works in complex tasks.

In this chapter, we leverage the existing large-scale 4-in-a-row data set to study learning

and motivation in the context of a combinatorial planning task. We begin by computing the

endpoint of participants’ learning trajectories, establishing that there is a correlation between

final playing strength and overall experience as a result of gameplay. Then, we characterize

the task components that drive task performance and engagement. To more precisely study the

learning process, we investigate playing strength changes with experience, finding that users

improve as a function of games played but ultimately plateau. In analyzing dropout behavior,

we determine the conditions under which people are more likely to stop playing, namely high or

low Elo ratings or large positive changes in their ratings. Then, we analyze the effect of physical

time between games and opponent playing strength on performance and engagement. Finally,

we construct a dynamic model that captures how people’s playing strength evolves relative to the
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time at which they play games and replicates our prior empirical results. Driven by behavioral

findings inmassive data, our work aims to derive a process-level model that explains the cognitive

mechanisms underlying learning and motivation in human gameplay.

5.1 Results

Despite the fact that 4-in-a-row was initially designed to study complex planning, it serves as a

testbed for investigating human reasoning and decision-making at large. This is a key advantage

of collecting large-scale behavior in naturalistic tasks: the resultant data sets can be repurposed

to explore a wide array of questions. In Section 2.1, we outlined the desiderata that qualify a

task as a promising candidate for studying human planning. We can restate these criteria in the

context of learning and motivation:

1. The state space should be large enough so that participants continue to encounter states

not previously experienced and the task remains challenging.

2. The task should be novel, so that all participants are in the steep part of their learning

curves.

3. The task should have simple rules, so that improvements are not due to participants learn-

ing the rules but rather learning strategies.

4. The task should be engaging, so that participants remain motivated for many sessions.

5. The task should be amenable to computational modeling.

As previously stated, 4-in-a-row satisfies these competing requirements by balancing complexity

and computational tractability. Additionally, the massive size of the data set allows us to run the

analyses necessary to simultaneously interrogate people’s learning trajectories as well as their

dropout behavior.
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5.1.1 Characterizing the relationship between learning and dropout

In order to motivate the rest of our analyses, we first investigated the relationship between task

performance and total experience. We measure users’ task performance using Elo ratings [Elo

1978], again for players with at least 20 total games played grouped into blocks of 20 games. This

results in 115, 968 unique users, and we use a common baseline to compute Elo ratings across all

experimental data. Throughout this chapter, we condition each analysis on a specific range of

games played, resulting in a variable number of participants. These are summarized in Table D.1,

with the corresponding distribution for each quantity across the population shown in Figure D.1.

In Figure 5.1A, we correlate final playing strength, or Elo rating in the last full block of gameplay,

with the total number of games played by each user (𝜌 = 0.270). Due to the size of the data set,

our p-values are below the minimum representable float (2 · 10−308) unless reported otherwise.

This result illustrates that, at the endpoint of their learning trajectories, users are more likely

to have higher task performance if they have accumulated more total experience with the task.

However, this provides no insight into how people get to this point.

To characterize this process, we can think about the relationship between learning and dropout

didactically. We start with the idea that two factors might be at play: each individual’s learning

rate, and how task performance leads to dropout (Figure 5.1B). If we take as an example an ex-

treme data point in the bottom left corner, this would be a user who doesn’t learn a lot per trial,

meaning their playing strength stays relatively constant, and is unlikely to drop out with high

scores, meaning they are persistent. In other words, initial abilities are the primary factor driving

dropout behavior. Conversely, we can imagine another extreme user in the top right corner who

learns a lot per trial and is more likely to drop out with higher scores. This would mean that

change in performance over time is more important for dropout and there is a ceiling where they

don’t engage anymore.

To illustrate how framing learning and dropout in this manner can lead to the final corre-
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Figure 5.1: The relationship between task performance and total experience. (A) 2-dimensional histogram
of the final Elo ratings and total number of games for the 104, 681 users who played at least 20 and less than
100 total games in the data set. (B)Didactic relationship between individual learning rates and the positive
or negative effect of performance on dropout. A user in the bottom left corner of this diagrammay have low
learning per trial but be less likely to drop out with high performance, while a user in the top right corner
might have high learning per trial but be more likely to drop out with high performance. (C) Simulation
results for 100 pseudo-users that had their initial Elo ratings drawn from a normal distribution, learning
rate drawn from a log-normal distribution, and stopping probability parameterized as a logistic function.
Adjusting the model parameters to correspond with the extreme conditions in (B) and simulating playing
strength increases per game until each user dropped out resulted in comparable correlations between
final rating and games played as in (A). Each circle represents a pseudo-user and the dotted line a linear
regression.

lation between ratings and total games that we observed in the data, we ran simulations for a

fixed number of 100 pseudo-users. For each pseudo-user, we drew an initial Elo rating from a

normal distribution centered at 0 with 𝜎 = 100. Then, we drew a learning rate from a log-normal

distribution at each step of the simulation to increase or decrease each users’ rating, and a logistic

function of the following form dictated when users dropped out:

1
1 + 𝑒−𝑘 (𝑥−𝑥0)

. (5.1)
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𝑘 is the logistic growth rate and 𝑥0 is the value of the function’s midpoint. Logistic regression

models have been used extensively in survival analysis to characterize time to event data as

hazard functions [Cox 1972], albeit in our application we are using the number of games played

as a proxy for time. In the low learning, negative performance-dropout condition (Figure 5.1C,

top) we parameterized the learning rate function with 𝜇 = 0 and 𝜎 = 0.1 and set 𝑥0 to −200 and

𝑘 to 100. For the high learning, positive performance-dropout condition (Figure 5.1C, bottom)

we parameterized the learning rate function with to 𝜇 = 0 and 𝜎 = 1 and set 𝑥0 to 200 and 𝑘 to

100. In the latter case, we also added a small random dropout probability of 0.05 on each game.

We then ran this model in each condition for 100 steps, recording the game number that each

user dropped out at. Despite these two conditions having distinct simulation parameters, they

both resulted in a similar correlation between final Elo rating and total games played to the data

(𝜌 = 0.185 and 𝜌 = 0.157).

Of course these are edge cases, and people may actually lie anywhere in the subspace be-

tween the two data points in Figure 5.1B. We don’t consider the other two corners of the diagram

because they wouldn’t result in a similar correlation between final playing strength and total

games played. More specifically, a user in the bottom right corner would not learn much and not

persist, leading to a nonexistent correlation. Meanwhile, a user in the top left corner would have

an extremely high learning rate and persist, meaning that the correlation should be much greater

than what we observe with people not dropping out almost at all if they play well. In the fol-

lowing sections, we break down the factors contributing to learning and dropout that drive this

correlation between task performance and total experience, attempting to specify where along

this spectrum people behave in 4-in-a-row.

5.1.2 Playing strength as an indicator for behavior during gameplay

To make more precise claims regarding the factors underlying users’ learning trajectories, we

first validated the result from Section 2.3 that a reliable increase in playing strength over time
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Figure 5.2: Playing strength increases during learning. (A)Average user Elo rating as a function of current
experience level conditioned on total number of games played. This is computed for the set of 107, 769
users who played at least 20 and less than 120 total games. (B) Same as (A), but for the 10, 698 users
who had played at least 100 and less than 500 total games. Shading denotes s.e.m. (C) Elo rating as a
function of current experience level for an upper bound agent that wins every game against the computer
opponents in the data set. (D) 2-dimensional histogram of the initial Elo ratings for the 104, 681 users
who played at least 20 and less than 100 total games in the data set.

occurs at the population level. In Figure 5.2A, we show that average Elo ratings increase as users

gain more experience, and that this trend occurs irrespective of the total number of games each

user ends up playing from 20 up to 119 total games (linear regression: 𝛽 = 1.500±0.893 ·10−2). We

also find a reliable, albeit smaller, effect of initial Elo ratings on current playing strength (linear

regression: 𝛽 = 0.664±0.160 ·10−2). Note that the correlation from Figure 5.1A can be observed by

connecting the endpoints of each learning curve. Importantly, we find no evidence for changes

in the slopes of users’ average learning trajectory when conditioned on either total number of

games played or initial playing strength. In Figure D.2, we provide additional evidence that Elo

ratings are a reasonable proxy for task performance in our data set.

Given the baseline that people are improving at the task, we investigated a number of be-
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havioral signatures further. The first is people’s learning rates, which seem to be close to linear

despite established literature suggesting that skill learning is exponential. When we shifted the

range of total games played to a range from 100 up to 499 games, we found that learning does in-

deed begin to plateau with significant experience (Figure 5.2B). Additionally, we verified that the

flattening of the learning rate is not due to a ceiling effect. To do this, we computed the Elo ratings

per block for an upper bound agent that won every game against the same computer opponents

that people played against. This agent showed a similar pattern to users with an increase in play-

ing strength that plateaus, but at much higher ratings than people reach on average (Figure 5.2C).

This agent also learns significantly more quickly and convergest to a fixed Elo rating. Finally, we

examined the order of the learning curves by analyzing the correlation between initial rather

than final playing strengths and total games played (Figure 5.2D). The effect of initial Elo ratings

is small, meaning that we can exclude it as a major indicator of dropout behavior (𝜌 = −0.024,

𝑝 = 7.427 · 10−16). This suggests that learning rates throughout gameplay are primarily captured

by current playing strength, current experience level, and individual differences.

In terms of dropout, we hypothesized that quitting in 4-in-a-row is strongly influenced by

current number of games played and current playing strength. In order to test this hypothesis, we

examined probability of stopping, which is the probability that users’ total experience is contained

within the next block of 20 games given a current block, as a function of a variety of factors. In

Figure 5.3A, we show that, on average, people are persistent: if they have played more games,

they are less likely to drop out. In Figure 5.3B, we computed probability of stopping as a function

of Elo rating, finding that people are least likely to drop out if they presently have intermediate

playing strengths. In other words, they are more likely to drop out with very low or high task

performance. We also investigated one additional factor, which is how the change in playing

strength from one block to the next affects stopping probability (Figure 5.3C). Interestingly, this

is monotonically increasing, suggesting a peak-end rule where people are more likely to drop

out when they experience a significant increase in their Elo ratings. Figure 5.3D provides a 2-
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Figure 5.3: Dropout behavior is driven by number of games played and recent playing strength. (A)
Probability of stopping during the next block of 20 games as a function of games played so far. Results
are grouped into 10 bins, and analyses were conducted for the 115, 968 users who had played at least 20
games in all panels unless otherwise stated. Shading here and in (B) and (C) denotes s.e.m. (B) Same as
(A), but for current Elo rating. (C) Same as (A), but for change in Elo rating from one block to the next for
the 48, 156 users who had played at least 40 games. (D) Probability of stopping during the next block of
20 games as a function of both the Elo rating and number of games played so far in the current block.

dimensional summary of this information, highlighting that as users play more games, they have

a lower stopping probability (logistic regression: 𝛽 = −0.020 ± 0.058 · 10−3) and their stopping

probability increases with higher Elo ratings (logistic regression: 𝛽 = 0.631 · 10−3 ± 0.010 · 10−3).

Each of these results maps on to distinct aspects of the intrinsic motivation literature, namely that

if users devalue a task due to lack of a challenge or information gain or find the task too difficult,

theywill stop participating. Additionally, our analyses uncover signatures of behaviors consistent

with both perseverance and peak-end effects. In sum, motivation in 4-in-a-row seems to align

with previously discovered biases in human behavior by solely analyzing the development of

users’ gameplay. One potential concern when investigating dropout is that the subset of data

we are utilizing classifies people who continue playing after the data collection period as people
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Figure 5.4: Physical time as a factor in gameplay. (A) Raster plot for the time course of play for 50
randomly selected users in the data set who had played at least 20 games. Each row is a user, while each
black bar is a game played. The x-axis indicates time in days, where 0 is the start of the data collection
period. (B) Coefficient of variation (CV) for the 115, 968 users in the data set who had played at least 20
games. Shading denotes s.e.m. CV is computed as the ratio of the standard deviation and the mean of
the inter-game interval (IGI) in hours, visualized as a density plot (left) and histogram (right). The mean
of the CV distribution is 2.245, and its variance is 2.213. (C) Average final user Elo rating as a function of
average IGI in hours and conditioned on total number of games played. This was computed for the set
of 115, 968 users who played at least 20 total games, grouped into 10 bins. (D) Average user Elo rating
as a function of games played, conditioned on low (less than average) or high (greater than average) IGI
in hours. This was computed for the set of 3, 088 users who played between 100 and 119 total games,
grouped into 10 bins. (E) Probability of stopping during the next block of 20 games as a function of both
the average IGI in hours and games played so far in the current block. This was computed for the set of
104, 681 users who played between 20 and 99 total games.

who quit. In Figure D.3, we provide a number of analyses showing that these edge effects are

insignificant across the population.

5.1.3 Time and opponents as additional factors

Thus far, we have analyzed dropout as a binary decision, where users continue playing until they

decide to stop doing so. However, building towards a more complete understanding of motivation
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requires considering the full time course of people’s playing history. To do so, we take inspiration

from the computational neuroscience literature, which visualizes neural activity over time using

raster plots. In a typical raster plot, each black bar represents one action potential, and each row

represents the spiking activity of a neuron over the duration of recording. We adapt this formula-

tion by replacing spikes with games played, where each row is the frequency of games played for

one user over the period of data collection (Figure 5.4A). A common method for modeling neural

spike trains is by assuming a Poisson distribution, which gives the probability of a neuron firing

a certain number of times within a given interval [Shadlen and Newsome 1998]. This assumption

requires evaluating the coefficient of variation (CV), or the ratio of the standard deviation and

the mean of the data. A Poisson process produces distributions with CV equal to 1, and in Figure

5.4B we computed CV across the inter-game interval (IGI) for all users in our data. While the

peak of the CV distribution is indeed near 1, the distribution has a tail greater than 1, suggesting

that the time interval between games is less regular than a Poisson process for a large portion of

users. When we model the time course of people’s gameplay in the next section, we will build on

the notion that users’ IGI can be approximated as a Poisson-like process.

We also considered the possibility that physical time influences learning and dropout directly.

In order to test this, we replicated previous analyses using IGI as an independent variable. First,

we asked if final playing strength differs for users that played the same number of total games but

had different average IGIs (Figure 5.4C). This analysis revealed that people with at least 20 and

less than 40 games of total experience tend to have higher final Elo ratings the more time passes

between games (𝜌 = 0.075, 𝑝 = 1.691·10−84), while people with at least 40 and less than 119 games

of total experience show exactly the opposite trend (𝜌 = −0.126, 𝑝 = 1.109 ·10−141). One potential

explanation is that time can play distinct functional roles, where consolidating experience over

longer periods of time is critical early in gameplay while a playing strength advantage arises

from quicker repetition with more experience. Figure 5.4D shows how users with both low and

high average IGIs have higher Elo ratings as more games are played (linear regression: 𝛽 =
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16.306±0.377). However, the learning curves differ in that users with higher average IGIs start out

with higher Elo ratings while those with lower average IGIs have steeper learning curves. Finally,

we investigated probability of stopping from one block to the next as a function of current games

played and average IGI (Figure 5.4E). Perhaps expectedly, dropout increases monotonically with

IGI (logistic regression: 𝛽 = 0.020 ± 0.020 · 10−3). More interestingly, as users play more games

their stopping probability increases with higher average IGIs and decreases with lower average

IGIs. These results suggest that performance and engagement are not only mediated by playing

strength and experience, but also by the time course of games played.

Another important aspect of gameplay in 4-in-a-row is that people are playing against a com-

puter opponent. There is a large body of literature incorporating data from human players to

create computer agents that learn opponent models. These models can in turn adapt their strate-

gies to exploit weaknesses or infer hidden information [Billings et al. 1998; Bakkes et al. 2009].

Here, we take an initial step towards understanding human behavior in our task relative to the

opponent by analyzing how the playing strength of the AI agent can influence both performance

and engagement. Specifically, we hypothesized that relative playing strength, or the difference in

computed Elo rating between a player and their opponent, is a reasonable estimate of perceived

differences in ability that could impact the shape of learning and dropout functions. We first val-

idated our staircase procedure by affirming that the opponents users are matched with are also

improving over time irrespective of the total number of games that people play (linear regression:

𝛽 = 22.276± 0.052, Figure 5.5A). In Figure 5.5B, we show how the learning curves differ for users

with low and high relative Elo ratings. Both groups seem to learn at a comparable rate given that

the shape of the curves are similar (linear regression: 𝛽 = 23.313±0.121), but players who tend to

be stronger than the opponents they are paired against in turn have higher raw Elo ratings while

the inverse is true for weaker players. Then, we examined probability of stopping as a function of

relative Elo ratings in a given block (Figure 5.5C) as well as change in relative Elo ratings from one

block to another (Figure 5.5D). In the former case, dropout increases as players are much stronger
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Figure 5.5: The effect of opponent playing strength on learning and dropout. (A) Average opponent Elo
rating as a function of current user experience level conditioned on total number of games played. This is
computed for the set of 107, 769 users who played at least 20 and less than 120 total games. (B) Average
user Elo rating as a function of games played, conditioned on low (less than 0) or high (greater than 0) Elo
ratings relative to their opponent. This was computed for the set of 3, 088 users who played between 100
and 119 total games, grouped into 10 bins. (C) Probability of stopping during the next block of 20 games
as a function of current relative Elo rating. Results are grouped into 10 bins, and analyses were conducted
for the 115, 968 users who had played at least 20 games. Shading here and in (D) denotes s.e.m. (D) Same
as (C), but for the change in relative Elo rating from one block to the next for the 48, 156 users who had
played at least 40 games. (E) Probability of stopping during the next block of 20 games as a function of
both the relative Elo rating and number of games played so far in the current block. This was computed
for the set of 104, 681 users who played between 20 and 99 total games.

than their opponent and likely find the gameplay demotivating. Meanwhile, in the latter case,

dropout is highest when user Elo ratings increase much more or much less than their opponents

and lowest when the changes in playing strength are matched. This reinforces the idea that peo-

ple prefer challenges, namely those that arise when the playing strength of an opponent adapts

to changes in their playing strength over time. Figure 5.5E provides a 2-dimensional represen-

tation of relative playing strength over number of games, highlighting that as users play more

games, they have a lower stopping probability (logistic regression: 𝛽 = −0.018± 0.058 · 10−3) and
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their stopping probability increases with higher relative Elo ratings (logistic regression: logistic

regression: 𝛽 = 0.705 · 10−3 ± 0.011 · 10−3). Opponent ratings directly influence game outcomes,

which are a core component of the graphical model we derive in the next section.

5.2 Model

To characterize the dynamic cognitive process that people undergo in terms of their performance

in and engagement with 4-in-a-row on a game-to-game basis, we model each players using the

formalism of a partially observable Markov decision process (POMDP). A POMDP is a general-

ization of an MDP where the agent does not know the state, but instead receives an observation

conditional on the state and action at each time step [Kaelbling et al. 1998]. POMDP models have

typically been used to describe decision-making behavior in which information is gathered from

an external environment, for example with eye fixations during visual search [Chen et al. 2017].

More recently, POMDPs have been proposed as a model of internal cognitive operations such as

the comparison of payoff probabilities and the computation of noisy estimates of expected value

[Chen et al. 2021] and even as a general framework describing interactions between mental states

[Oulasvirta et al. 2022]. Thus, we leverage the structure of POMDPs, as our problem similarly

consists of interaction with a dynamic and partially observable environment.

The intuition for our computational model is based on our insights into the factors driving

learning and dropout functions in this task (Figure 5.6A).We consider a state 𝑠 to be a combination

of a starting physical time 𝑡 of a game 𝑛 and a playing strength 𝑅. Since playing strength is an

unobservable variable, we assume it can be measured by an Elo rating, which is observable. The

outcome of a game 𝑜 is determined by the user’s rating as well as the opponent rating through

the Elo equation. Additionally, we denote the action 𝑎 to be the time that a user allows to elapse

between the end of a game 𝑛 and the start of the next game 𝑛 + 1. After each additional game

is played, users receive a new Elo rating which noisily increases or decreases based on their
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individual learning rate. We also assume that ratings decay exponentially until the user plays

another game. Together, these give the following update rule:

𝑅𝑛+1 ← 𝑅𝑛 + 𝜆learning(𝑅∞ − 𝑅𝑛) + 𝜎noise𝜂 − 𝜆forgetting𝑎𝑛 (𝑅𝑛 − 𝑅0) (5.2)

where 𝑅0 is the baseline playing strength, 𝑅∞ is the asymptotic ceiling playing strength, 𝜆learning is

the learning rate, and 𝜆forgetting is the forgetting rate. Forgetting decays proportionally to elapsed

time. Thus, we explicitly account for the fact that learning starts at a baseline, plateaus over time,

and that large gaps between games lead to decreases in playing strength. The noise on playing

strength increases 𝜂 is standard normal noise with variance 𝜎noise. The update equation for the

start time of each game is then:

𝑡𝑛+1 ← 𝑡𝑛 + 𝑎𝑛 . (5.3)

We omit the policy 𝜋 = 𝑝 (𝑎𝑛 |𝑠𝑛), which predicts the elapsed time between games for the user. In

practice this can depend on many variables, but for simplicity we assume that it is determined

by 𝑜𝑛 and thus implicitly 𝑅𝑛 . The probability distribution we use is for this is a Weibull, which

is closely related to a Poisson distribution but is used for near-continuous time between events.

Finally, we need a prior on the initial Elo ratings, which we approximate as a normal distribution

from the empirically computed ratings at game 20.

Our model has 9 parameters of interest, which are the learning rate and decay 𝜆learning and

𝜆forgetting, the baseline playing strength 𝑅0, the ceiling playing strength 𝑅∞, the mean and variance

of the initial playing strength prior, the mean and variance of the policy, and the variance of the

noise for updating playing strength from game to game 𝜎noise. For the purposes of this chapter,

we run the model forward with manually selected parameters to simulate our empirical results

with details provided in Appendix D.3. In future work, we plan to fit the model to individual game

results and elapsed times. Figure 5.6B-D show that the correlation between final playing strengths

and total number of games played, the population level learning trajectories conditioned on total

97



t2 R2

t1 R1

o2

o1

s2

s1

a1

A B

DC

Figure 5.6: A graphicalmodel of task performance and engagement in 4-in-a-row. (A) Partially observable
Markov decision process (POMDP) where the state 𝑠𝑛 is the user’s state at the start of the game 𝑛. Each
state consists of a time 𝑡𝑛 and a playing strength 𝑅𝑛 . Each state results in a game outcome 𝑜𝑛 while 𝑎𝑛
is the time that the users lets elapse between the end of game 𝑛 and the start of the next game 𝑛 + 1.
This panel shows 𝑛 = 1, meaning the relationship between game 1 and game 2, for an arbitrary user. (B)
Model simulations replicating the 2-dimensional histogram of final Elo ratings and total games played
from Figure 5.1A. (C) Same as (B), but for average user Elo rating as a function of current experience level
conditioned on total number of games played from Figure 5.2A. (D) Same as (B), but for probability of
stopping during the next block of 20 games as a function of both the Elo rating and number of games
played so far in the current block from Figure 5.3D.

experience, and the probability of dropout as a function of current playing strength and number

of games played can all be reliably reproduced by the model. In Figure D.4, we validate that the

model can also replicate the time course of people’s gameplay.

5.3 Discussion

In this chapter, we utilized the existing large-scale data set of participants playing a two-player

combinatorial game in order to characterize human learning and dropout functions. We first es-
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tablished that playing strength and overall experience are correlated before using playing strength

as an indicator for behavior. Specifically, we found that playing strength increases with the num-

ber of games played and that experience level along with current playing strength and changes

in playing strength drive stopping probabilities. Then, we expanded the notion of dropout to a

continuous spectrum of games played over physical time, and investigated how inter-game inter-

vals bias task performance and engagement. We also considered the effect of opponent playing

strength on gameplay. Finally, we combined the components derived from our empirical results

into a dynamic model of learning and motivation that is able to reproduce the patterns that were

observed in the data.

Taken together, our results must be interpreted within the context of prior work on human

skill learning and intrinsic motivation. Learning is typically exponential over time but can be

altered by traits such as grit and perseverance. Meanwhile, studies on motivation have found

that people prefer to engage with tasks of intermediate difficulty and are particularly influenced

by peak and end experiences. Our analyses reveal signatures of each of these factors in human

gameplay. Namely, people exhibit playing strength increases with experience that eventually

plateau, are less likely to quit the more games they play, and are most likely to drop out with sig-

nificant positive increases in their own performance or extreme changes in behavior quantified

either by their own playing strength or their playing strength relative to their opponent. The

key contribution we provide is to embed these aspects of cognition into a process-level model of

performance and engagement that views the latter as a decision that occurs dynamically over a

continuous period of time. Returning to Figure 5.1B, it seems that 4-in-a-row players lie some-

where towards the top right corner of our didactic spectrum. That is to say, users tend to have a

large, albeit noisy, learning rate that mediates how likely they are to drop out. However, people’s

placement isn’t fixed along the diagonal, as, for example, learning rates can decreases over time.

One limitation of our approach is that it is constrained to a singular instance of human game-

play, and it is not immediately clear whether our results generalize to other tasks or real-world
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settings. Given that our results are generally consistent with the literature on intrinsic moti-

vation, we suspect that some form of performance-mediated stopping occurs in most tasks for

which participation is autonomous, and that people’s exact schedules of engagement vary based

on the nature and difficulty of the task. We speculate that the same effects of experience on

performance will exist in tasks for which skill learning is required. In particular, even more com-

plex games like chess and Go may take longer to achiever proficiency in due to the necessity for

more domain-specific knowledge and practice. That being said, our model is purposefully task

agnostic, and should be relatively straightforward to adapt to other tasks if the factors underlying

learning and dropout can be reliably identified.

While the work presented here was not explicitly about planning, 4-in-row is designed to

elicit behavior where people must think multiple steps into the future. Our foundational learning

result is that that playing strength increases with the number of games played. In Section 2.3, we

showed that a computational cognitive model can predict human moves and therefore attribute

improvements in playing strength to increased planning depth, decreased feature dropping, and

bounded increase in heuristic quality. These changes in derived metrics point to mechanistic

explanations for the cognitive process underlying learning, and in future work we aim to inves-

tigate how these metrics relate to dropout. Additionally, we can take the approach from Section

4.2 that utilizes response times as an approximate measure for amount of planning. This would

allow us to ask questions about the relationship between specific board features and the cognitive

factors we’ve already analyzed across the entire data set rather than a subset that is amenable to

model fitting. More broadly, a general model that decides whether or not to continue engaging

with a task can be combined with a more task-specific model that actually performs the task it-

self. While our two models for these aims are currently fairly distinct, bringing together these

modular components is a more concrete step forward for understanding how humans cognitively

navigate such complex decisions.

One of the main contributions of this work is to advocate for concepts from seemingly dis-
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parate fields, such as survival analysis and human studies on motivation, to be integrated into

analyses of learning in massive cognitive science data sets. Our use of logistic regression to ini-

tially simulate dropout as well as our intuition for factors that mediate learning, such as playing

strength as a proxy for task difficulty, are derived from these fields. Another related field worth

mentioning is player modeling, or the study of computational models of players in games [Yan-

nakakis et al. 2013]. Specifically, one application of player modeling is to optimize game design

to be maximally enjoyable or tailored to the skill level of individual players [Togelius et al. 2006;

Pedersen et al. 2010; Shaker et al. 2010]. These implementations either rely on a computational

theory of fun or on models that are trained to predict experience or affect [Malone 1981]. Impor-

tantly, our modeling is inherently different in use case given that our goal is to mathematically

describe cognitive processes rather than successfully engineer engaging content in games. That

being said, a better understanding of what people find naturally rewarding in unstructured game-

play will surely influence the development human-like player models. As the use of large-scale

data sets where participants have autonomy over participation becomemore ubiquitous, we hope

that it will become standard for accounts of human behavior to model learning and motivation

simultaneously.
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6 | Conclusion

6.1 Dissertation summary

In this dissertation, I outlined a framework for studying the cognitive mechanisms of complex

planning. The framework in question consists of a combinatorial game called 4-in-a-row that

requires thinking multiple steps into the future, a computational model that combines a feature-

based value function and heuristic search to fit human behavior, and a large-scale data set of

people playing the game in their daily environments. I showed that these components can be

used to attribute increases in playing strength with experience to distinct cognitive mechanisms

such as depth of planning and attentional oversights in Chapter 2. This foundation is built upon

for the remainder of the dissertation, highlighting the breadth of scientific directions that can be

pursued by pushing the boundaries of task, model, and data complexity.

To improve the computational cognitive model, I trained deep neural networks to predict

people’s moves in 4-in-a-row in Chapter 3. The best network approaches a satisfactory noise

ceiling, reproducing signatures of human play almost exactly. The key concept behind this work

is to guide model improvement with powerful machine learning techniques. To this end, the

best network can be used to identify deviations between the cognitive model and the network,

which are more informative than comparisons between that same model and the data. In turn,

these residuals inspire three model extensions that range from biases in the early game to the

recognition of opponent threats in the late game.
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To understand how people might mitigate the costs associated with thinking ahead, I derived

a normative model of meta-planning in Chapter 4. The meta-planner conceptualizes planning

as gaining noisy measurements about the true value of given state-action pairs, combines this

prospective estimate with retrospective information, and returns a decision on whether and in

which direction it is worthwhile to plan. I showed how the model produces intuitive simulation

results with regards to the gap in perceived value between actions, the accumulation of prior

experience, and the uncertainty of simulations, and that evidence for these principles can be

found in people’s response times in 4-in-a-row.

To investigate the nature of learning and motivation, I analyzed the factors influencing task

performance and engagement in Chapter 5. While this work is not primarily about planning,

it attempts to characterize the relevant cognitive mechanisms affecting human gameplay in a

planning task. I first framed the fundamental problem as one of identifying the underlying pro-

cesses contributing to an observed correlation between final Elo ratings and total experience in

4-in-a-row. A series of analyses revealed that playing strength is a primary indicator of learning

and dropout, and that the physical time that games are played at and opponent playing strength

also influence behavior. These results led to the construction of a process-level model of task

performance and engagement that reproduces the empirical findings.

In the remainder of this chapter, I conclude by embedding this approach to studying complex

planningwithin a broader context. Specifically, I comment on the successes and limitations of this

framework, noting what questions it can be extended to answer, how it relates to adjacent fields

in psychology and neuroscience, and what a path forward looks like for enriching our collective

understanding of planning in naturalistic environments.
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6.2 Limitations and future directions

6.2.1 Extended usage of the framework

Given that the proposed framework provides a foundation for studying complex planning, there

are numerous extensions along different dimensions of the task, model, and data that I would

like to discuss. Many of these are are already underway, either in the laboratory or in collab-

oration with other colleagues, and others will almost certainly be the subject of future work.

However, I believe they are directly relevant to this dissertation, especially in highlighting how

an overarching research program can be constructed around this framework.

Empirical variations on 4-in-a-row were a fundamental part of the work in Chapter 2 [van

Opheusden et al. 2023]. There, I focused on the methods and modeling that were essential to the

remaining chapters, noting the primary expertise result that replicates from the laboratory ex-

periment to large-scale mobile data. Two of these experimental manipulations that I have thus far

neglected to mention served to validate the computational cognitive model of human planning.

In a generalization experiment, 40 participants performed three tasks: playing against computer

opponents, a two-alternative forced choice (2AFC) between moves in a given position, and a

board evaluation task. The computational model predicted people’s choices above chance, sug-

gesting that it can generalize between different choice tasks in the 4-in-a-row domain. Moreover,

we conducted a Turing test experiment [Turing 2009], in which 30 observers decided whether se-

quences of moves were generated by the model or by human players. Human observers achieved

only 55.4% discrimination accuracy, suggesting that the model makes human-like decisions. One

potential use of the neural networks in Chapter 3 is to run a similar Turing test experiment,

where the hypothesis would be that people’s discrimination accuracy is even lower than that of

the model if it is truly capturing people’s behavior.

Beyond model validation, we performed multiple experiments that could serve as starting
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Figure 6.1: Empirical extensions of 4-in-a-row, namely eye tracking (top) and time pressure (bottom).
(A) The trajectory of eye movements on one example trial. The black lines represent saccades and the
yellow circles represent fixations. The circle area indicates the duration of fixation. (B) The estimated
distribution of overt attention across unoccupied squares, obtained by convolving the eye trajectory with
a Gaussian filter. (C) The distribution of squares visited by the model’s search algorithm, with parame-
ters estimated from the participant’s choices. (D) The average Elo rating of the participants in the time
pressure experiment, as a function of the time limit. (E) The average depth to which participants plan in
the time pressure experiment, as estimated by the behavioral model. (F) The same as in (E), but for the
feature drop rate. (G) The same as in (E), but for heuristic quality.

points for entire lines of research. To analyze eye movements, we ran an experiment in which

10 participants played against computer opponents while we tracked their eye movements with

an infrared video-based eye tracker. Figure 6.1A shows one participant’s fixation trajectory in

an example board position. We estimated the distribution of squares that a participant overtly

attends to on an individual trial by convolving their fixation trajectory with a Gaussian filter,

truncating to unoccupied squares and averaging in time. Figure 6.1B-C shows that the distribution

of squares visited by the cognitive model during its search process resembles this distribution

of attention (mean correlation across participants: 𝜌 = 0.535 ± 0.024, 𝑡 (9) = 21, 𝑝 < 0.001).

This provides a preliminary relationship between the model and eye tracking data, but does not

provide answers to more detailed questions. For example, can eye and mouse movements more

generally be used as a predictive measure of people’s internal cognitive processes, serving as

an indicator for other internal states such as surprise? Further, we conducted a time pressure
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experiment in which 30 participants played against computer opponents, with a time limit of 5,

10, or 20 seconds permove, randomly sampled for each game. We predicted that, if planning depth

approximately measures the amount of computations that a participant performs while making

a move, it should scale with time used for that move [Calderwood et al. 1988; Chabris and Hearst

2003; Van Harreveld et al. 2007]. Figure 6.1D shows that planning depth is overall lower than

in the learning experiment and indeed increases with longer time limits (𝛽 = 0.042 ± 0.018, 𝑝 =

0.019). Despite this increase, we find no improvement in participants’ playing strength (𝛽 = −2.0±

1.6, 𝑝 = 0.21, Figure 6.1E). Themodel suggests a potential explanation for the lack of performance:

at the most relaxed time limit, people overlook features more often (𝛽 = 0.0027 ± 0.0010, 𝑝 =

0.009, Figure 6.1F), and the dropped features cancel out the benefit of increased search. In this

experiment, heuristic quality does not change with time pressure (𝛽 = 0.00086 ± 0.00056, 𝑝 =

0.13, Figure 6.1G). However, the interplay between time pressure and attention in the context

of planning is itself an interesting question that can be studied with experiments that alter the

specifics of the time limit conditions as well as the order in which they are shown.

Additionally, we ran a memory and reconstruction experiment with the 30 participants in the

laboratory version of the learning manipulation. This showed that experts were better at recon-

structing the specific set of features that our model relies on for its evaluations. Parallel work

has replicated this result for memory and reconstruction of game sequences rather than individ-

ual positions [Huang et al. 2023]. These results suggests an explanation for the observed effect

of expertise on planning depth: experts sharpen their representation of game-relevant features,

allowing for more position evaluations per unit time and therefore deeper planning. A number

of related extensions that change the task itself from free gameplay are worth considering. For

example, does giving people a tryout board to augment their planning improve performance or

alter planning depth? Moreover, how predictable are the board positions in which participants

opt for physical over mental simulation? Taking inspiration from the chess literature, would be-

havior change if people were asked to search for a winning sequence of moves in 4-in-a-row
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puzzles that contain minimum solutions of varying lengths or narrate their deliberation process

out loud while selecting moves?

One specific application of the task and model worth highlighting is in the realm of develop-

mental science [Ma et al. 2022a]. Participants of ages 8 to 25 years played 4-in-a-row against the

same set of computer opponents used in the large-scale mobile experiment, and the behavioral

model was fit to their moves. The study found asynchronous age-related changes in the model’s

derived metrics, namely that heuristic evaluation of features improves rapidly from childhood

to adolescence, planning depth shows more protracted developmental improvements, and atten-

tional oversights do not vary across age groups. Collectively, these results provide a mechanistic

account of the continued development of model-based decision strategies into adulthood. More-

over, this work demonstrates that the framework can be used to disentangle howmultiple, distinct

cognitive processes contribute to planning.

In terms of models, I have introduced three distinct classes of models throughout this disser-

tation: process-level models of human behavior, either for planning in Chapter 2 or performance

and engagement in Chapter 5, neural networks to predict human play in Chapter 3, and a nor-

mative framework for meta-planning in Chapter 4. Naturally these models interact in various

contexts, such as the neural network guiding the implementation of improvements in the heuris-

tic search model and the meta-planner deriving principles that explain previously unaccounted

for data in 4-in-a-row. However, there are interactions which have not yet been explored. For

example, we can incorporate a retrospective algorithm into the behavioral model for 4-in-a-row,

or perhaps more ambitiously implement a meta-planner to guide search online. Alternatively, we

can hypothesize about how learning and motivation interact with planning to model gameplay

at timescales beyond predicting individual moves. We also have ongoing work training LLMs to

predict human moves. In contrast to the aforementioned neural networks, LLMs have a capacity

to be even more powerful move predictors that can capture novel aspects of human behavior

such as individual differences between participants and the effects of sequences of moves. Addi-
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tionally, there is currently broad interest in comparing how humans and machines learn different

cognitive tasks [Flesch et al. 2021; Kumar et al. 2022]. While networks trained to predict human

play are not suitable for this approach, neural networks optimized for the task itself, similar to Al-

phaZero, suggest that increases in performance are mostly driven by policy quality [Zheng et al.

2022]. This type of comparison can highlight differences between the strategies that humans and

artificial agents use to solve planning problems, and often engineering computer agents to exhibit

more human-like behavior provides insight into our underlying cognitive function.

Finally, I have yet tomention the third component of the framework onwhich this dissertation

is based, which is the large-scale behavioral data set. The main advantage of collecting rich

behavioral data is that it can be used as a testbed for a range of psychological theories. The

approach outlined in Chapter 5, which is to leverage the size of the data to answer questions about

cognitive mechanisms of interest that are not necessarily related to planning, can be extended

to many other domains. Perhaps the most straightforward extension is to investigate aspects of

human gameplay that have already been assessed in massive chess data sets, such as blunders,

risk-taking, and the selective use of cognitive resources [Anderson et al. 2017; Holdaway and

Vul 2021; Russek et al. 2022]. In addition to these, questions ranging from the representations

that people use while planning to identifying if distinctions in play arise in highly experienced

players are all viable research directions. The results in this dissertation are based on a data

collection period of roughly 8 months, but users have continued to play 4-in-a-row on the Peak

platform since then. At the time of writing, this means that we have access to an additional 57

months of data. In practical terms, none of the work here would have benefited from an order of

magnitude increase in the number of games. However, there may be future ideas that necessitate

scaling the size of the data set respectively. Preliminary thoughts in this direction include testing

methodological advancements that allow for an increased capacity to fit process-level models,

limiting analyses to particular pools of participants or board configurations, and investigating

how strategies develop across the population of players over years.
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6.2.2 Relationship to neuroscience

I am compelled to comment on the fact that this dissertation will be submitted in a neuroscience

department despite being completely devoid of what is traditionally thought of as neural data.

Indeed, the work I have presented concerns itself primarily with explaining human cognition via

behavioral modeling, and contains no data collected using methods such as animal electrophys-

iology or human neuroimaging. This primarily reflects a change in my personal interests as a

scientist, but also in my perception of how neuroscience and cognitive science are related. Per-

haps the most obvious connection is that these two fields constrain each other: knowledge about

biological plausibility provides bounds on the computations or algorithms that the brain can pos-

sibly implement, and behavioral modeling informs the set of signals or response characteristics

to search for in neural data. However, in my experience, these are softer constraints than many

people tend to initially believe, and there is value in exploring the space of algorithms that could

explain a particular behavior without explicitly considering its neural implementation a priori.

All of the process-level and normative models presented in this dissertation were constructed

using this mindset, with consideration given to a rational use of cognitive resources with mecha-

nisms such as pruning in the heuristic search model or explicitly aiming to reduce the number of

costly measurements made in the meta-planner. The majority of models that cognitive scientists

propose are of this form, and I do not believe that they are fundamentally incompatible with our

understanding of neural hardware. In fact, as I covered in the Section 1.2, the study of multi-step

planning has an interdisciplinary history with roots in both psychology and neuroscience that

my work hopefully contributes to. Ultimately, both neuroscience and cognitive science aim to

collectively explain how the human mind functions, and it is logical to approach such a massive

question from different levels of abstraction. Simply put, human behavior is, in my opinion, at

its core a form of neural data.

That being said, neural data can serve another function in relation to cognitive science not
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unlike how, for example, response time data has been used throughout this dissertation to lend

credibility to specific model components. This can be achieved by correlating these components

directly with neural measurements, and there are various avenues of work doing so with 4-in-a-

row and its respective behavioral model in order to better understanding possible neural imple-

mentations ofmodel-based planning algorithms. Nathaniel Daw andMarceloMattar are leading a

study in which participants perform trials in which they select the best move while in a functional

magnetic resonance imaging (fMRI) scanner. Based on literature from neuroscience [Johnson and

Redish 2007; Pfeiffer and Foster 2013] and behavioral economics [Levy and Glimcher 2012], the

hypothesis is that the hippocampus and ventromedial prefrontal cortex (vmPFC) encode values

of board states, which are either those presented currently to the participant or ones suggested

by the search algorithm as possible future states which are likely to arise. Another possible ques-

tion is whether vmPFC computes a weighted sum of features like the heuristic value function in

the model, which can be investigated using a representational similarity analysis [Kriegeskorte

et al. 2008]. Additionally, Daeyeol Lee is implementing a version of 4-in-a-row for nonhuman

primates to test simultaneously record single-neuron and local-field potential (LFP) activity of

neurons in the prefrontal cortext. The goal is to identify whether dorsomedial prefrontal cortex

(dmPFC) contributes to the evaluation of alternative strategies and learning algorithms [Seo et al.

2014; Lee and Seo 2016] while dorsomedial prefrontal cortex (dlPFC) might be more involved in

the computation and representation of integrated values of alternative choices [Lee et al. 2014].

SanjayManohar is also leveraging the task to investigate whether human patients with prefrontal

cortex lesions show deficits in planning ability that don’t seem to be present in the two-step task.

Together, neural data on 4-in-a-row across both humans and nonhuman primates will serve to

illuminate the role that various brain regions play in sequential decision-making.
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6.2.3 Generality and scaling further

Undoubtedly the most glaring limitation of this dissertation is that all of the findings are con-

strained to a single task and data set. This begs the question: is 4-in-a-row actually representative

of complex planning in the real world? In terms of the results themselves, there is no reason to

suspect they would not generalize to other paradigms and environments. The primary conclu-

sion about the increase of planning depth with expertise is consistent with classic results in chess

[Campitelli and Gobet 2004; Holding 2021], with the understanding that those results were ob-

tained using qualitative methods. Our neural network approach to model improvement is a direct

application of prior work to the domain of planning [Pedersen et al. 2021], and our meta-planner

is closely related to other classes of models ranging fromMCTS to information sampling [Browne

et al. 2012; Callaway et al. 2021], deriving principles for thinking ahead that can be found in var-

ious studies on human planning [Dickinson 1985; Daw et al. 2005]. Similarly, our work on task

performance and engagement is directly linked to the psychology of skill learning and intrinsic

motivation [Heathcote et al. 2000; Schmidhuber 2010]. Thus, each chapter in this dissertation is

supported by the broader literature in such a way that the choice of paradigm is not a limiting

factor in and of itself.

However, I am ultimately interested in attaining an in-depth understanding of the general

principles underlying human cognition. As such, it is important that what we learn about plan-

ning in my work holds across a wide range of paradigms. Before considering generalizations to

other paradigms, though, it was crucial to develop a pipeline that allows for reliable, quantitative

inferences about human reasoning in naturalistic environments. Due to the fact that complex

planning is a relatively new field, such a pipeline was entirely missing. Thus, the approach out-

lined in this dissertation lays the methodological foundation for a new subfield of the study of

higher cognitive function that can be readily applied to other paradigms. One example of this

includes work modeling human decisions in a single-player puzzle called Rush Hour, which con-
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sists of a dense configuration of rectangular cars on a 6-by-6 grid where the goal is to move cars

horizontally or vertically to allow the target car to reach an exit. To directly address the con-

cept of generalization, another line of ongoing research is running 4-in-a-row as part of a larger

battery of widely used cognitive tasks that includes Corsi block-tapping [Corsi 1972], Towers of

London [Shallice 1982], and mental rotation [Shepard and Metzler 1971] tasks as well as alter-

native planning tasks. This will elucidate to what extent the components of planning map onto

more established cognitive functions via correlations, and can potentially be used to investigate

if planning abilities transfer across tasks.

What about Chase and Simon’s claim that chess has the potential to become the “Drosophila

of psychology,” establishing itself as a standard task for investigating theories of cognition? A

central assertion made throughout this dissertation is that there are numerous benefits to using

intermediate complexity tasks that preserve tractability. Until now, chess has not been amenable

to the type of process-level modeling presented here. However, recent work has provided a proof

of concept that it is indeed possible to test hypotheses regarding human cognition from a quan-

titative perspective in chess despite the innate complexities of the task [Russek et al. 2022]. Simi-

larly to the work presented here, the approach is to leverage the accessibility of massive numbers

of human games from online platforms, albeit to characterize when people make intelligent de-

cisions about how to allocate their cognitive resources. The lack of a computational model for

human play in chess is alleviated by the use of chess engines as an idealized model of planning.

Pushing the boundaries of task complexity is a natural step forward for the work outlined in

this dissertation, and this initial illustration provides a roadmap for validating results such as the

kinds of simplified representations that people have, whether people utilize computations from

previous experiences, and if people selectively ignore unpromising action sequences. Scaling this

further has the potential to uncover the learning processes that govern people’s decisions, either

via reinforcement learning at the individual level or cultural transmission at the collective level.

The highest form of success would be to develop a detailed computational model of human plan-
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ning in chess similar to the one for 4-in-a-row. Amajor difficulty is in identifying the features that

comprise a value function, but there is promising work analyzing the knowledge that AlphaZero

acquires in chess that may serve as a starting point [McGrath et al. 2022]. This overarching ap-

proach is not at all limited to chess, and can extend to other complex games such as Go [Shin

et al. 2023]. As such, I am optimistic that, over 50 years later, computational cognitive scientists

might finally be poised to contribute to realizing Chase and Simon’s vision.

6.2.4 Related fields

Planning in naturalistic environments doesn’t occur in a vacuum. Thus, there are many lines of

research within computational cognitive science that have the potential to interact with complex

planning in interesting ways. If the ultimate goal for researchers working on planning is to

create a universal behavioral model of prospection, then it is imperative to start considering such

interactions. I briefly review related fields here, commenting on points of intersection.

One prominent domain is that of social cognition, which investigates how people process in-

formation andmake decision in contexts that require interaction with others. Theory of mind has

traditionally framed this problem as one of optimizing mutual behavior by modeling represen-

tations of a second agent’s intentions and goals [Yoshida et al. 2008]. Related work has defined

resource rationality in joint action spaces [Török et al. 2019; Vélez et al. 2023], the effect of priors

and uncertainty over a partner’s policy and beliefs [Barnby et al. 2022; Ma et al. 2022b], and the

differences in executing programs that selectively collaborate or compete [Kleiman-Weiner et al.

2016]. Recently, it has been suggested that theory of mind is used to plan novel interventions

and predict their effects [Ho et al. 2022b], but the specific ways in which people infer and in-

corporate the knowledge and strategies of others while thinking many steps ahead remains an

open question. Does planning depth change as uncertainty over a collaborator’s policy is re-

duced, and what is the role of communication when making collaborative decisions? Teaching

is a particular instance of collaboration in which a teacher forms a belief about the knowledge
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that a student possesses and gives instructions or explanations that try to induce a target concept

in the student’s mind [Popp and Gureckis 2020]. Describing the cognitive mechanisms underly-

ing people’s ability to transmit abstract, generalizable concepts efficiently through a handful of

examples is an active area of research [Gweon 2021; Vélez et al. 2023], and there is work apply-

ing similar concepts to improve people’s planning strategies via artificial intelligence [Callaway

et al. 2022a]. However, the exact components of prospective deliberation that can be transferred

from one agent to another, and the methods by which this process is achieved, require further

investigation. At a population level, social cognition enables cultural transmission, or the spread

of ideas and strategies through large numbers of individuals [Thompson et al. 2022]. This type of

social interaction certainly occurs in adversarial games such as 4-in-a-row, chess, and Go, where

players are paired with different opponents and have the opportunity to learn and improve by

observing their actions. As such, I believe that the interaction between planning and social cog-

nition will steadily emerge as an exciting research area, specifically along dimensions such as

collaboration and competition, teaching, and cultural transmission in large populations.

There are also a collection of current ideas in cognitive science that can be incorporated into

and provide constraints on the construction of algorithms for human planning. One such example

is working memory, which refers to an information-limited process used to hold representations

in the mind temporarily for use in thought and action [Cowan 2017; Oberauer et al. 2018]. The

literature on working memory is much too broad for me to cover, but there has already been

work advocating for the serious treatment of working memory in reinforcement learning agents

that aim to replicate humans’ ability to learn, generalize, and make flexible decisions [Yoo and

Collins 2022]. During tree search, what is the optimal strategy under which to expand nodes if

people have limited memory capacity rather than a simple global cost per computation? Further,

if the process of planning includes forgetting the values of certain states over time, how should an

algorithm be designed to revisit states and update beliefs accordingly? Goals are another factor

that play a central role in driving human cognition, but the majority of models of learning and
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decision-making take goals as given [Molinaro and Collins 2023]. Investigating goal selection as

an independent value-based decision process is essential to develop more complete accounts of

behavior in both biological and artificial agents. Finally, the interaction between various aspects

of cognition requires people to intentionally exert effort to overcome automatic biases such as

habits. The field of cognitive control aims to uncover how cost-benefit analyses are impacted by

innate processes and motivational barriers [Frömer et al. 2021; Collins and Shenhav 2022]. While

these are just a few examples, any cognitive process that that impacts decision-making should

also be studied in the context of planning, since by definition planning extends decision-making

to a sequential problem that is simulated internally. In sum, directly studying the interplay be-

tween disparate processes is particularly important when aiming to build a comprehensive un-

derstanding of human cognition. Planning is no exception to that, and thus far computational

theories of planning tend to ignore factors such as rewards, goal selection, and cognitive control

that undoubtedly affect behavior.

6.3 Parting words

Throughout this dissertation, I have hopefully convincingly advocated for an approach to science

that first conceives of a complex task and then uses rigorous computational methods to extract

meaning from data generated by behavior in that single task instance. This might give the im-

pression that I am fundamentally against a more traditional approach to research, or at the very

least that I consider my way to be superior. This could not be further from the truth. In fact, I

have found myself quite often fascinated by talks I have attended or papers I have read in which

the elegance of a task designed to cleverly test a specific hypothesis instantly struck me. Perhaps

this is a case of the grass always being greener on the other side, where my lack of training in ex-

perimental design becomes all the more apparent upon self reflection. Nonetheless, I am equally

drawn to the inverse approach to science than what I have presented here, which is primarily
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motivated by a question and then considers how to best isolate a variable of interest.

This is all to say that there is no correct or incorrect way to do science. More complex tasks

are not better than simpler tasks, nor can they by themselves inherently elicit more interesting

behavior or give us more insight about the human mind. The same can be said for specific com-

putational methods, and for every other choice we make as scientists. In the end, the approach

I’ve taken in my research reflects some combination of what appeals to me in a logical sense,

but also the circumstances that I’ve been placed in that are mostly out of my control. This is

something that I strongly believe in, and throughout my time in graduate school I’ve always felt

uncomfortable by people dismissing certain research directions because they differed from their

own. To create a truly inclusive academic environment, it is imperative that we support and show

interest in a multitude of diverse variations on the scientific method.

This level of open-mindedness, in one way or another, relates to how I ended up studying

complex planning in the first place. I would love to say that it was the result of deep thought in

which I carefully considered a number of the possible benefits and drawbacks to pursuing this

line of work compared to alternatives. Somewhat ironically, it had nothing to do with planning

at all, and I really just thought working on games might be fun when presented with the idea as

someone who decidedly lacked a singular topic I wanted to dedicate years of research to. This

nicely connects back to the quote at the beginning of this dissertation as well as one of Jorge Luis

Borges’s most famous stories, The Garden of Forking Paths, which is known for its description

of an infinite labyrinth that branches in time rather than space. Tomihiko Morimi’s The Tatami

Galaxy operates in this exact environment, with the protagonist repeatedly making a slightly

different choice at the outset of his college years, none of which lead to his desired, idealized

campus life. Ultimately, what matters is the acceptance of past decisions and moving forward,

with the knowledge that exploring another branch of the labyrinth would not necessarily lead

to a better outcome, whatever that may mean. Similarly to the novel’s protagonist, I did not

intend to study complex planning, but I can’t imagine what my life would look like if I had
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chosen a different path, and trying to do so is not a particularly fruitful exercise. Maybe the right

interpretation here is that planning is overrated.

To conclude, I think it is an extremely exciting time to be a computational cognitive scien-

tist. Our methodological toolkit continues to expand as a field, eliciting newfound interactions

between seemingly disparate processes underlying the function of the human mind. I hope that

with the work outlined in this dissertation, I have played a small role in contributing to our col-

lective understanding of human decision-making and cognition more broadly. And in the future,

maybe I’ll finally get to design an experiment.
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A | Appendix for Chapter 2

A.1 Human-versus-human experiment

For our human-versus-human experiment, we recruited 40 participants in pairs. For each pair, we

provided consent forms and instructed participants on the task together, after whichwe separated

them into different rooms from which they played games against each other through an online

interface. After 50 minutes had expired and they finished their last game, the participants com-

pleted a post-task questionnaire, during which we provided them with compensation (12 USD in

cash). Only after completing the survey and receiving compensation did the participants leave

their respective rooms. Thus, the participants interacted socially before and after the experiment,

but not during games.

The participants played games against each other, switching colors every game. After each

game, we presented both participants with a pop-up showing both players’ names, the current

score, and a button to continue to the next game. The interface proceeded only after both players

had clicked the “continue” button. Every time the participant or their opponent moved, the in-

terface made a faint clicking noise. During games, instead of making a move, participants could

offer a draw to their opponent, which caused a pop-up prompt to appear on the other participant’s

screen to accept or reject the offer. If the opponent accepted the draw, the game ended immedi-

ately, otherwise the pop-up disappeared and the player who made the offer could make a move

instead. We did not restrict how many draw offers participants could make (including multiple
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offers on the same move), but participants made relatively few draw offers. In this experiment,

we never imposed any time limits.

A.2 Large-scale mobile data

In collaboration with the mobile app company Peak (https://www.peak.net), we designed a

large-scale study of people playing 4-in-a-row. When signing up for the app, users consented to a

privacy policy, which included a provision that aggregated and anonymized data might be shared

with third parties such as universities. The Institutional Review Board of New York University

determined that no further consent was required and approved the research protocol as exempt.

Overall, we collected 11, 529, 163 gameswhere users always play first and the game board itself

is vertically oriented and gamified. Users play at-will against a computer opponent. We filtered

the data to remove games where the user times out of any move, since timing out creates games

where the computer opponent plays first or makes two consecutive moves. The time limit to

make a move is 10 seconds. This procedure resulted in 82, 761, 594 moves from 10, 874, 547 games

and 1, 234, 844 unique users. In Table A.1, we provide the number of users that played 4-in-a-row

in each country on the Peak platform. In order to generate the computer opponents, we made

slight modifications to the cognitive model described in Chapter 2 and in greater detail later on in

this supplement: (1) we used a pruning rule that keeps only the 𝐾 highest-value children in each

node of the search tree, (2) we added a scaling constant that multiplies the weights of features

belonging to the opponent and for features of different orientation, and (3) we artificially added

a delay to each computer move to simulate thinking times, which monotonically increased with

the number of search iterations that the computer performed on each move. This ensured that

the computer played faster in easy positions compared to hard ones. We created 7 classes of

computer opponents of varying strength by specifying distinct parameter ranges derived from

the human-versus-human experiment that corresponded to estimated Elo ratings [Elo 1978], and
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Country code Number of users
US 556,838
GB 254,638
FR 129,728
BR 120,999
DE 116,603
JP 96,485
IT 75,274
CA 72,094
AU 63,809
MX 52,982
NL 41,712
ES 39,961
CN 38,646
IN 26,624
TW 23,225
CH 21,132
DK 20,869
BE 20,775
SE 20,757
AR 19,297

Table A.1: Number of users per country that play 4-in-a-row on the Peak platform. Only the top 20
countries with the most users are shown.

matched users with an opponent on each game based on their track record of game results.

In terms of the implementation of the experiment on the Peak platform, each turn is scored

based on the time remaining for each move. Specifically, there is a base score per move and a

multiplier that is added depending on how long the user takes:

perTurnScore = baseScore + ⌊
(
multiplier ·

√︁
timeRemaining

)
⌋ . (A.1)

At the end of each game, a bonus is added based on the result. This is the sum of all scored turns

multiplied by a value that is based on losing, drawing, or the number of turns it took to win:

endBonus = ⌊
(∑︁

perTurnScore ·multiplier
)
⌋ . (A.2)
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Rank Base Score Multiplier
1 50 10
2 100 10
3 150 10
4 250 10
5 350 10
6 450 10
7 550 10

Table A.2: Per turn scoring for 4-in-a-row on the Peak platform. Each rank corresponds to a class of
users that are matched with AI agents. These users receive a combination of a base score and multiplier
to compute a score on each turn.

Thus, the final score that the user receives is:

finalScore =
∑︁

perTurnScore + endBonus. (A.3)

In Tables A.2 and A.3, we provide the full per turn and bonus scoring. Each user is assigned a

rank based on their score, which corresponds to the 7 AI agent classes. For each turn, an AI is

randomly chosen from this range to decide which computer opponent makes the move. This

happens during each move, so multiple AIs are used in a single game to match other task AIs on

the Peak platform. Overall, the values are chosen so that the theoretical maximum score at each

rank increases between ranks and follows a fair downward progression as the games plays out.

Incidentally, 4-in-a-row is one of the most popular games on the Peak platform. In a qualita-

tive survey of 520 randomly selected users, participants were asked to report what they thought

about the task. We provide a selection of the responses below that illustrate aspects we considered

in designing the task or that make 4-in-a-row particularly suited to studying complex planning.

What do you like about the task?

• Another way of developing my problem solving skills, different from the other tasks. It is

challenging.
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Result Number of moves remaining Multiplier
Loss Any 0
Draw Any 1.5
Win 4 28
Win 5 22
Win 6 18
Win 7 15
Win 8 12
Win 9 10
Win 10 8
Win 11 7
Win 12 6
Win 13 5
Win 14 4
Win 15 3
Win 16+ 2

Table A.3: End bonus scoring for 4-in-a-row on the Peak platform. After every game played, users receive
a bonus score based on a combination of result (win, loss, or draw), number of moves remaining in the
game, and a multiplier.

• Having an opponent makes the game different from other games and makes it interesting.

• It looks easy but it turns out to be quite challenging.

• It’s a more strategic game of the classic “tic tac toe” hence combining classic childhood

games whilst exercising the mind in a more complex matter.

• It’s challenging but so satisfying when you beat the AI.

• It’s fun to be thinking ahead.

• Keeps you thinking about your next move in order to win the game whilst also thinking

how to not let the computer win.

• Makes me try to look ahead for moves. It seems though that the computer lets me win

sometimes by placing marker in totally useless position.
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• More advanced noughts and crosses. First to start (me) always has the advantage.

• The computer usually will win if you leave it the opportunity, which does make it feel more

challenging to you.

What do you dislike about the task?

• Getting a diagonal line is incredibly difficult.

• I always have to make the first move.

• I can’t believe that the computer doesn’t beat me every time.

• I haven’t yet worked out how to improve at this game. It feels a bit more dependant on

luck than skill.

• It takes a while for the game to choose a move sometimes.

• It’s hard to stay consistent and win a lot.

• Not dislike exactly and I understand that the Peak player has to be fair but sometimes its

moves seem illogical.

• Playing to draw (deliberately not playing winning moves) to move up ranks.

• Presumably there is a formula for beating the robot, so once you have worked it out, it will

no longer be challenging.

• You have to trust that the computer is using a process similar to a human rather than

making the most obvious move.
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A.3 Detailed model specification

A.3.1 Value function

The value function consists of two terms, the first of which measures whose pieces are closer to

the board center:

𝑉center =
∑︁

®𝑥∈Pieces(s,black)

1
∥ ®𝑥 − ®𝑥center∥

−
∑︁

®𝑥∈Pieces(s,white)

1
∥ ®𝑥 − ®𝑥center∥

(A.4)

where Pieces(𝑠, 𝑝) enumerates the locations of all pieces that player 𝑝 owns, ®𝑥center denotes the

coordinate of the board center, and ∥·∥ is the Euclidean distance.

The second term counts how often particular patterns occur on the board in any orientation.

A feature is a binary function 𝑓𝑡,𝑥,𝑦,𝑜 (𝑠) that returns 1 if a pattern of type 𝑡 occurs at location

(𝑥,𝑦) with orientation 𝑜 , and 0 otherwise. We use the following patterns: connected 2-in-a-row,

unconnected 2-in-a-row, 3-in-a-row, and 4-in-a-row. We define 𝐹 to be the set of all such features

(one for each type, orientation, and board location), and associate a weight 𝑤 to each feature in

this set. The feature weight depends only on its type, not the orientation or location. Finally, we

write the value function as:

𝑉𝐹 (𝑠) = 𝑤center𝑉center(𝑠) + 𝑐black
∑︁
𝑖∈𝐹

𝑤𝑖 𝑓𝑖 (𝑠, black) − 𝑐white
∑︁
𝑖∈𝐹

𝑤𝑖 𝑓𝑖 (𝑠,white) + N (0, 1) (A.5)

where 𝑐black = 𝐶 and 𝑐white = 1 whenever black is to move in state 𝑠 , and 𝑐black = 1 and 𝑐white = 𝐶

when it is white’s move. The final term N(0, 1) represents additive Gaussian noise with mean

zero and unit variance.
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A.3.2 Tree search

The search algorithm constructs a decision tree, consisting of nodes that contain a state 𝑠 , the

color of the active player in that state, and a value associated to the state. Upon initialization,

the value of a new node is set by calling the feature-based evaluation function. However, this

value changes as the algorithm investigates the consequences of future play from that state. The

algorithm starts with a single node and gradually grows the decision tree. Each iteration, the

algorithm selects a leaf node, expands it by adding one child node each for a number of candidate

moves, and backpropagates the value of these new nodes recursively into the leaf node as well

as its parents.

Algorithm 1: MakeMove(state 𝑠)

if Lapse(𝜆) then

return RandomMove(s);

else

DropFeatures(𝛿);

root←node(s);

while !Stop(𝛾) and !Determined(root) do

𝑛 ←SelectNode();

ExpandNode(n);

Backpropagate(n);

end

end

return argmax𝑐∈children(root)𝑐.𝑣𝑎𝑙 ;

Here, Lapse and Stop represent stochastic functions that return true with probability 𝜆 and

𝛾 , respectively, and Determined checks if the value of the root node (winning, losing, or drawn)
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has been determined with certainty. RandomMove(𝑠) returns a random legal move in state 𝑠 . The

SelectNode function determines the order bywhich nodes are added to the tree. We use best-first

search, which selects a node by following the principal variation, in which both players always

make the best moves according to the currently estimated values, starting from the root to a leaf

node. Because the value of nodes in the tree change after each iteration, so does the principal

variation, and therefore the search algorithm dynamically switches between different branches

of the tree.

Algorithm 2: SelectNode()

𝑛 ← root;

while children(𝑛) ≠ ∅ do

if 𝑛.color = black then
𝑛 = arg max𝑐∈children(𝑛) 𝑐.𝑣𝑎𝑙

else
𝑛 = arg min𝑐∈children(𝑛) 𝑐.𝑣𝑎𝑙

return 𝑛;

After the search algorithm has selected a leaf node to explore, it expands it by adding one child

node for each legal move in the associated state. As it initializes the children, it automatically eval-

uates their states using 𝑉 (𝑠) as defined above. The algorithm does not yet check whether either

of these states is terminal (that is, either player has achieved 4-in-a-row or the board is full), but it

effectively does so if𝑤4-in-a-row is high enough. Next, the algorithm prunes unpromising children

whose value difference with the best candidate move exceeds a threshold 𝜃 . Only afterwards does

it assign 𝑉 = 10, 000 to each child state in which black has won, 𝑉 = −10, 000 if white has won,

and 𝑉 = 0 for draws. It is therefore possible that, if 𝑤4-in-a-row is too low, or if the algorithm has

dropped a 4-in-a-row feature in a relevant location, it will prune away an immediately winning

move, which can result in bad (but human-like) blunders.
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Algorithm 3: ExpandNode(node 𝑛)

s← 𝑛.𝑠𝑡𝑎𝑡𝑒;

foreach legal move𝑚 in 𝑠 do

n.AddChild(node(𝑠 +𝑚));

if 𝑛.color = black then
𝑉max = max𝑐∈children(𝑛) 𝑐.𝑣𝑎𝑙

else
𝑉max = min𝑐∈children(𝑛) 𝑐.𝑣𝑎𝑙

for 𝑐 ∈ children(𝑛) do

if |𝑐.𝑣𝑎𝑙 −𝑉max | > 𝜃 then
RemoveChild(c)

Next, the search algorithm incorporates the value of the newly created nodes into the decision

tree with minimax backpropagation. After backprogagation, the value of each state reflects the

search algorithm’s best estimate of the result of a game starting in that state with perfect play

from both sides.

Algorithm 4: Backpropagate(node 𝑛)

if n.color=black then
𝑛.𝑣𝑎𝑙 ← max𝑐∈children(𝑛) 𝑐.𝑣𝑎𝑙

else
𝑛.𝑣𝑎𝑙 ← min𝑐∈children(𝑛) 𝑐.𝑣𝑎𝑙

if n≠root then
Backpropagate (n.parent)

The search algorithm continues to run until the Stop routine returns true, after which it

makes the best move according to its estimated values. Since the Stop routine is random and

127



independently drawn each iteration, the total number of iterations follows a geometric distribu-

tion with parameter 𝛾 . When implementing our model as a computer algorithm to play against

human opponents, we convert the number of iterations 𝑁 into a “thinking time” for the agent by

𝑡 = 𝑎
√︁
𝑁𝛾 + 𝑏, where 𝑎 = 4s and 𝑏 = 0.5s.

The main model has 10 parameters: the pruning threshold 𝜃 , the stopping probability 𝛾 , the

lapse rate 𝜆, the feature drop rate 𝛿 , the active scaling constant𝐶 , and the feature weights𝑤center,

𝑤connected 2-in-a-row, 𝑤unconnected 2-in-a-row, 𝑤3-in-a-row, 𝑤4-in-a-row. We do not add a parameter for the

variance of the value noise, since changing the noise distribution from N(0, 1) to N(0, 𝜎2) has

the same effect as changing 𝜃 → 𝜃
𝜎
and 𝑤 → 𝑤

𝜎
for each feature. Therefore, adding 𝜎 would

over-parametrize the model and cause 𝜎 , 𝜃 , and {𝑤𝑖} to be unidentifiable from data.

A.4 Stopping rule

To make predictions for response times, we amend the model with a stopping rule, which termi-

nates the best-first search algorithm when the model’s preferred move in the root node remains

unchanged for 50 consecutive iterations. This stopping rule is in addition to the random stopping

rule implied by the stopping probability 𝛾 . To obtain a response time prediction from the model

with given parameters on a given trial, we simulate 100 moves from the model, and measure the

average number of search iterations executed before the algorithm terminates.

The stopping rule allows the model to predict differences in response times across trials for

the same participant. In positions where one move is clearly preferred over other options (for

example, if the opponent has a direct threat that needs to be parried), the algorithm will quickly

rule out any alternatives and spend its remaining time calculating the future consequences of that

move. Therefore, the preferred move in the root node remains unchanged for many iterations,

and the stopping rule causes the search to terminate, resulting in a low number of iterations. In

other positions with many plausible alternatives, the model will waver, the stopping rule will not
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trigger, and the model will search longer. Thus, the termination rule is one way of incorporating

the known effect of decision difficulty on response times. Other plausible stopping rules might

behave similarly. For example, one can base the termination criterion on relative node values or

node visits, as in MCTS.

A.5 Model comparison

A.5.1 Lesions

Our first set of alternative models are lesion models, obtained by removing components from

the main model. Each lesion can be implemented by fixing a parameter to a constant. The No

center, No connected 2-in-a-row, No unconnected 2-in-a-row, No 3-in-a-row, and No 4-in-a-row

models are obtained by setting the respective feature weight to zero. The No feature drop model

is obtained by fixing 𝛿 to zero, and the No active scaling model results from fixing 𝐶 to 1. To

obtain the No pruning model, we fix 𝜃 to 20, 000, which is larger than any value difference that

occurs in search and causes the model to never prune. Note that the model cannot compensate

by increasing feature weights since their order of magnitude is yoked by fixing the value noise

to have unit variance. Finally, the No tree model is achieved by fixing 𝛾 to 1. This causes the

algorithm to stop after 1 iteration, in which case it will have expanded only the root node, and its

choice will be the highest-value child. Pruning lower-value children does not affect this choice,

so 𝜃 is not a parameter in this model.

A.5.2 Modifications

In our first modifiedmodel, Fixed iterations, we change the stopping routine Stop from a stochas-

tic function to a deterministic function that returns true whenever the number of iterations has

exceeded a constant 𝑁 . In the Fixed depth model, we amend the search process to explore every
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branch up to a fixed depth 𝐷 . In the Fixed branching model, we amend the pruning rule to keep

the 𝐾 highest-value children in each node (lowest-value when white is to move). If the expanded

node has less than 𝐾 children, the algorithm prunes nothing. Next, we consider removing the

feature drop mechanism and instead applying a function in which each child is pruned with a

probability 𝜀 in ExpandNode before the value-based pruning, resulting in the Square dropping

model. For the Optimal weights model, we restrict the feature weights {𝑤𝑖} to a constant vector,

which we chose by maximizing the Pearson correlation between tanh (𝑉 (𝑠)/20) and the game-

theoretic value �̃� (𝑠) across all states 𝑠 that occurred in the human-versus-human experiment.

Finally, we considerMonte Carlo tree search (MCTS). In this algorithm, instead of evaluating a

state with𝑉 (𝑠), we perform a rollout: a simulated game starting from state 𝑠 between two agents

that follow a myopic policy. That is, in state 𝑠′, the agent chooses the move 𝑚 that maximizes

𝑉 (𝑠′+𝑚), or the one that minimizes it when white is to move. We then assign a value of 1 to state

𝑠 if the rollout results in a win for black, 0 for white wins, and 1
2 if the game is a draw. Note that,

since the evaluation function contains noise, the myopic policy and the outcome of the rollout

are also stochastic. We only perform a single rollout when evaluating a state.

After performing a rollout, MCTS backpropagates by averaging rather than minimax, en-

suring that the value of each intermediate node of the tree is equal to the average outcome of

the rollouts conducted in all descendants of that node. We amend the best-first selection rule as

follows:

𝑛 = argmax
𝑐∈children(𝑛)

𝑐.val (A.6)

to the UCB formula

𝑛 = argmax
𝑐∈children(𝑛)

𝑐.val +𝐶exp

√︄
log (𝑛.𝑁rollouts)
𝑐.𝑁rollouts

(A.7)

where 𝑛.𝑁rollouts counts the number of rollouts that have been conducted in node 𝑛 or any of its

descendants, and 𝐶exp is a parameter that controls the balance between exploitation (investigat-

ing high-value children) and exploration (investigating children that haven’t been investigated
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much). Finally, after the tree search terminates, the algorithm makes a move by maximizing

𝑁rollouts across all children of the root node.

A.5.2.1 Extensions

We create the Orientation-dependent weights by multiplying the weight of vertically or diag-

onally oriented features by scaling constants 𝑐vert and 𝑐diag, respectively. For the Orientation-

dependent dropping model, we allow the feature drop rate for horizontally, vertically or diag-

onally oriented features to vary, whereas in the Type-dependent dropping, we let the drop rate

depend on the feature type. In the Triangle model, we include a feature which counts the number

of times that any of a set of 3-piece patterns occurs on the board. Finally, the Opponent scaling

model extends the main model by adding a scaling constant 𝑐opp that multiplies weights of fea-

tures belonging to the opponent. Note that opponent scaling and active scaling are dissociated

since the former multiplies weights of the opponent’s features regardless of whose move it is,

whereas the latter is adaptive.
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B | Appendix for Chapter 3

B.1 Neural network training and testing

The neural networks were all implemented using PyTorch [Paszke et al. 2019]. We used stochastic

gradient descent for training and reduced the learning rate if the loss associated with the valida-

tion set was stagnant for 3 epochs. The initial learning rate was set to 0.001, and we decayed the

learning rate by amultiplicative factor of 0.2 at each decrease. We trained each network for a total

of 10 epochs using a cross entropy loss function. Cross entropy loss is an appropriate choice for

our task because it combines a logarithmic Softmax and negative log-likelihood, and is often used

for classification problems where the goal is to assign weight to each of a number of classes. All

layers had their biases initialized to 0 and weights drawn from a normal distribution with mean

0 and standard deviation 0.01, and we use a batch size of 128. In Figure B.1A, we show example

training and validation curves for the largest network. Curves for the remaining networks look

similar, with a sharp improvement in the first few epochs that flattens out in later epochs, along

with a minor effect caused by decreasing the learning rate.

In Figure B.1B-C, we validated the network’s training procedure by showing that the likeli-

hoods are correlated between the largest network and the networks that are one step smaller in

terms of either number of units per layer or number of hidden layers. In Table B.1, we enumerate

all combinations of networks that we trained, including the average negative log-likelihood per

move and overall accuracy on the test set.
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A CB

Figure B.1: Neural network training procedure. (A) Training and validation curves over the 10 training
epochs for the best network, which has 80 hidden layers and 4, 000 units per layer. (B) Scatterplot of the
negative log-likelihood for every move on the test data set between the best network and the network
with 80 hidden layers but only 2, 000 units per layer (𝜌 = 0.99, 𝑝 < 2 · 10−308). (C) Same as (B), but
comparing the best network with the network that has 4, 000 units per layer but only 40 hidden layers
(𝜌 = 0.99, 𝑝 < 2 · 10−308).

B.2 Model extension specification

To iterate on the baseline model, we implemented mechanisms inspired by comparison with the

best neural network. Specifically, we investigated the board positions that resulted in the largest

difference in terms of predictability between the neural network and the baseline model. This

resulted in three model variants, which we describe in this section. Note that each model addition

is kept for later extensions. For example, the defensive weightingmodel has all mechanisms of the

baseline model, the opening bias mechanism, and the additional defensive weighting mechanism.

The negative log-likelihoods for each of these model variants on the test data set as well as their

overall accuracy are shown in Table B.2.

The opening bias model was inspired by early game moves that are played towards the left

side of the board and the corners of the board, a phenomenon that can be corroborated by looking

at the histogram of first moves made by users in the data set (Figure B.5D). Therefore, we added 4

feature weights to𝑉 (𝑠), which are only active on the opening move and correspond to each of the

corners of the board. This allows the model to more flexibly predict humanmoves that stray from
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Number of hidden layers Number of units per layer NLL Accuracy
5 200 1.98 38.75%
10 200 1.95 39.68%
20 200 1.92 40.20%
40 200 1.91 40.63%
80 200 1.90 40.88%
5 500 1.95 39.55%
10 500 1.93 40.18%
20 500 1.91 40.73%
40 500 1.89 41.04%
80 500 1.89 41.22%
5 1000 1.93 39.93%
10 1000 1.91 40.68%
20 1000 1.89 41.03%
40 1000 1.88 41.30%
80 1000 1.88 41.41%
5 2000 1.92 40.41%
10 2000 1.89 40.98%
20 2000 1.88 41.33%
40 2000 1.88 41.49%
80 2000 1.87 41.58%
5 4000 1.90 40.69%
10 4000 1.88 41.32%
20 4000 1.87 41.55%
40 4000 1.87 41.67%
80 4000 1.87 41.71%

Table B.1: All trained neural networks designated by a combination of the number of hidden layers and
number of units per layer. Each network has a corresponding average negative log-likelihood per move
as well as overall prediction accuracy on the test data.

the center of the board. While this addition improved the model fit, the magnitude of the effect

is minor, likely because it only affects 1 out of the possible 18 moves that a player makes in any

given game. A more sophisticated mechanism could extend these biases to all moves by decaying

their influence throughout gameplay. Even further, humans likely use a retrospective system in

early game decisions where planning is less informative [Kuperwajs et al. 2019]. If this is the case,

these biases might be shaped by habit or the success of certain opening sequences in previous

games. Investigating the tradeoff between prospective and retrospective decision-making is out
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Model NLL Accuracy
Baseline 2.17 34.88%

Opening bias 2.16 34.86%
Defensive weighting 2.13 35.23%
Phantom features 2.14 34.51%

Table B.2: All tested cognitive models designated by added mechanism. Each model represents the best
parameter combination on the training data over 20 runs, and has a corresponding average negative log-
likelihood per move as well as overall prediction accuracy on the test data.

of the scope of the current chapter, but is an entire field in and of itself and integrating such a

mechanism into this model would most likely improve its performance.

The defensive weighting model was inspired by situations where the baseline model failed to

defend against immediate threats. In specific positions where the human player should defend

against an immediate loss, the baseline model predicts that the user will instead create high-

value features for themselves elsewhere on the board. This happened when the created features

were valued much more highly than the removed 3-in-a-row feature for the opponent, such that

the defending move was pruned from the decision tree. Both the neural network and the data

did not show this pattern of oversights. To fix this, we added another feature weight to 𝑉 (𝑠),

which explicitly targets immediate threats made by the opponent. With this change, leaving a

winning move for the opponent on the board is devalued such that the move that defends against

this threat is not pruned from the tree. Additionally, we noticed that the baseline model could

not overlook 4-in-a-row features during its search because it used the correct win condition to

build the tree. To enable overlooking the 4-in-a-row feature, we made the detection of terminal

states dependent on the 4-in-a-row feature instead and fixed the value for this feature to the

arbitrary, very high value of 10, 000. This is certainly not the only possible implementation to

push the model to consider defending against immediate threats, but it successfully eliminated

these errors and improved the model fit. Beyond that, it is certainly plausible that people pay

special attention to opponent threats as a cognitive mechanism.

Finally, the phantom features model was inspired by board positions in which the the network
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and humans seemed to create or defend against 3-in-a-row features where there is no space for

the final piece needed to win the game. The features in the baseline model all require that there

are empty squares on the board to complete a 4-in-a-row. We enumerated the 4 3-in-a-rows that

occur in the corners of the board following this pattern, and added a feature weight that scales

their contribution to 𝑉 (𝑠). Interestingly, this did not improve the model fit from the defensive

weighting model although it did improve the predictions for the board positions that we based

this extension on. This means that adding these features is causing the model to performworse in

other positions. A more general mechanismmight take this tradeoff into account by, for example,

checking the proximity of the piece that is being considered by the player to the rest of their own

pieces. Another possibility is that these boards do not represent phantom features at all, but

rather a different mechanism that can still account for these board positions. Regardless, this

extension can be iterated on further to create a better cognitive model.

B.3 Model fitting

The baseline model has 9 parameters: the 5 feature weights, the pruning threshold 𝜃 , stopping

probability 𝛾 , the feature drop rate 𝛿 , and the lapse rate 𝜆. For the various model improvements,

we added a few additional parameters: the 4 corner weights for the opening move, the defensive

scaling weight, and the phantom features weight. For the defensive weighting and phantom

features model variants, we removed one of the feature weights from the baseline model, namely

the one for 4-in-a-row that is replaced by a fixed high value. Therefore, our model improvements

have a total of either 13 or 14 parameters.

In the previous chapter, the cognitive model was fit to individual users using 5-fold cross-

validation to reduce overfitting. Since we wanted to make the model fits comparable with the

neural network, we inferred parameters while treating the entire training set as one user, effec-

tively eliminating any concerns regarding overfitting. We continued using both IBS [van Opheus-
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Figure B.2: Example high and low accuracy board positions for the neural network’s predictions. The user
is playing black while the computer opponent is playing white. Additionally, the red shading indicates the
probability distribution of the network’s move prediction and the open circle indicates the user’s selected
move.

den et al. 2020] as well as Bayesian adaptive direct search [Acerbi andMa 2017] as before. Tomake

this computationally feasible, we evaluated the log-likelihood on 100, 000 trials that are randomly

sampled for each evaluation. We tested both lower and higher numbers of evaluations, deciding

on the value that balanced reliability of the likelihood estimates across training runs as well as

fitting time. For each model variant, we ran the fitting procedure 20 different times, choosing the

combination of parameters that resulted in the best log-likelihood. On the test data set, we then

ran 100 repetitions to estimate the log-likelihoods for each move and 200 simulations in each

board position to get a probability distribution over potential moves. On our hardware, fitting

takes anywhere from one or two days to a week depending on the size of the network or the

number of evaluations used for the planning model. Cumulatively, we trained a total of 25 neural

networks and fit a total of 80 cognitive models.
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Figure B.3: Example high and low entropy board positions for the neural network’s output distribution.
The format for the board positions is the same as for Figure B.2.

B.4 Example board positions

In order to ensure that the best neural network is capturing human gameplay in 4-in-a-row with

its predictions, we examined board positions sorted according to different criteria. In this section

we provide a number of illustrative examples for each analysis. For the accuracy analysis, we

sorted board positions by the negative log-likelihood of the network’s prediction compared to

the data (Figure B.2). High accuracy boards were those in which there was an immediate win or

loss present, or a combination of both, and the user made the same move as the network. Low

accuracy boards were those in which the human made a clear error in gameplay, usually playing

far away from the pieces on the board. These positions also typically include an immediate win

or loss, or just a generally strong move to make that the network favors. This further serves to

show that the network is approximating human behavior, minus the mistakes that we are not
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Figure B.4: Example board positions played by stronger and weaker users for the neural network’s pre-
dictions. The format for the board positions is the same as for Figure B.2.

interested in capturing with any model. For the entropy analysis, we sorted board positions by

the entropy 𝐻 of the network’s output distribution 𝑝𝑛 (Figure B.3):

𝐻 = −
∑︁

𝑝𝑛 · 𝑙𝑜𝑔(𝑝𝑛). (B.1)

High entropy boards were those in which the network was unsure of where to play, typically

consisting of only a few pieces on the boardwhere presumably human behavior is highly variable.

Even in these positions, the network assigns higher probability to squares adjacent to existing

pieces on the boardwhere people tend to play. Meanwhile, low entropy boardswhere the network

is sure of its prediction were similar to high accuracy boards, with the network and the data

agreeing on exploiting 3-in-a-rows for the player or defending against opponent 3-in-a-rows.

Once again, this shows that the network is behaving in a way that aligns with our intuitions

about gameplay in 4-in-a-row, confidently predicting human moves when user behavior is more
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stereotyped and there are more pieces on the board.

For the playing strength analysis, we estimated a user’s playing strength from games against

computer opponents using Elo ratings [Elo 1978] via Bayeselo [Hunter 2004] (Figure B.4). Ratings

calculated for relatively few games can be statistically unreliable, sowe included only players who

had played at least 20 total games played in our analysis, resulting in 115, 968 unique users. We

used a common baseline to compute Elo ratings across all experimental data, which outputs an

Elo rating for each user and AI agent in the data set that can be directly compared to one another.

Moves made by players with higher Elo ratings tended to be easier for the network to correctly

predict, as stronger players play more consistently and make fewer errors. For example, strong

players tend to create features for themselves or block opponent features when it is rational

to do so, and they play in the most common squares of the board as predicted by the network

in the opening. Moves made by players with lower Elo ratings tended to be more difficult for

the network to correctly predict, as weaker players make more mistakes and have more lapses

in gameplay. This includes behaviors like playing far away from existing pieces, overlooking

opportunities to create or defend against strong features, and playing away from the center on

the first move.

B.5 Neural network validation

We conducted a few additional analyses to corroborate the neural network’s performance and

compare with the cognitive model. First, we validated that giving the network more opportu-

nities to correctly predict the human move quickly converged to 100% accuracy (Figure B.5A).

This was indeed the case when averaged by move number, as the network starts out at its overall

accuracy of 41.71% with a single guess, and converges to near perfect accuracy with only a few

additional guesses. This is important as a sanity check that even if the network is wrong about the

human move, the correct move is still among the top candidates. Next, we investigated the effect
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Figure B.5: Additional validation that the neural network achieves a satisfactory upper bound on good-
ness of fit and exhibits human-like behavior. (A) Accuracy as a function of the number of guesses given
to the neural network to correctly predict the human move, averaged across the test test. (B) Negative
log-likelihood on the test data set as a function of the user’s experience level, or total number of games
played (binned into quantiles). (C) Accuracy as a function of move number for the neural network (blue)
and baseline model (orange), averaged across the test set. (D)Histogram of the user’s first move across all
games in the data set, which the network approximates. An example board position where the network’s
opening move distribution is shown can be found in Figure B.4.

of experience on the negative log-likelihood of the network’s predictions (Figure B.5B). Number

of games played is roughly correlated with Elo ratings, and repeating our playing strength analy-

sis with experience resulted in a similar decreasing trend. Further, looking at the board positions

associated with different experience levels provided additional evidence for the relationship be-

tween playing strength and experience. As expected, high experience players made moves and

were predicted by the network similarly to stronger players and low experience players make

errors and were predicted by the network similarly to weaker players.

In order to further compare the neural network with the cognitive model, we repeated a

number of analyses fromChapter 3 with themodel. One of these is average accuracy as a function

of move number, where the model shows a similar trend across gameplay as the network but

with a consistently lower accuracy (Figure B.5C). Finally, we computed all 9 summary statistics

for the model as well. Overall, the model performs similarly to the network (and in turn the data)

on many of these, highlighting the fact that the model was already capturing many aspects of

human play. This was expected given the large number of iterations on the model in previous
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Figure B.6: Comparison of summary statistics between the neural network and the baseline model. Each
statistic is averaged by move number for the neural network (blue lines) and the baseline model (orange
lines).

work [van Opheusden et al. 2023]. The largest deviations between the network and the model

occurred in a few distinct places: (1) the distance to the center of the board in the early game

where the network strayed from the center more than the model does, (2) the number of threats

made where the model both overestimated and underestimated the rate at which to create 3-in-

a-rows at different points in gameplay, and (3) the number of threats defended against where the

model played too defensively in the middle game. These differences relate to the mechanisms we

extracted from our comparison of the model and the network that we ended up implementing

in our model extensions. This analysis was done in the main text by looking at board positions

with high KL divergence 𝐿 between the network’s output distribution 𝑝𝑛 and the model’s output

distribution 𝑝𝑏 on every move, defined as:

𝐿 = 𝑝𝑏 · log
𝑝𝑏

𝑝𝑛
= 𝑝𝑏 · (log𝑝𝑏 − log𝑝𝑛). (B.2)
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C | Appendix for Chapter 4

C.1 Detailed model derivation

Here we provide the full model derivation for the meta-planner. We assume that the agent has

the option of executing a tree search policy 𝜋 , and that a state-action pair 𝑠, 𝑎 has a theoretical

long-running expected reward under 𝜋 , 𝑄𝑎 . This value is not known and therefore has to be

approximated. In our model, we take an inference view, where 𝑄𝑎 is unknown to the agent, and

the agent tries to build a probability distribution over each 𝑄𝑎 .

C.1.1 Generative model

We begin by describing the generative model for our framework, meaning the set of underlying

assumptions that generate the measurements the agent has available to them prior to making a

decision.

C.1.1.1 Distribution of 𝑄 values

We assume that the true𝑄-value for an action follows a distribution 𝑝 (𝑄𝑎). We assume a normal

distribution as follows:

𝑄𝑎 ∼ N
(
𝜇0, 𝜎

2
0
)
. (C.1)
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The Q-values per action are independently drawn from this distribution.

C.1.1.2 Retrospection

We model an experience with action 𝑎 in state 𝑠 as a noisy measurement of the true 𝑄 value:

𝑞retro,𝑎 ∼ N
(
𝑄𝑎, 𝜎

2
retro

)
. (C.2)

The agent can have numerous experiences with each state-action pair, and we denote 𝑛retro,𝑎 as

the number of past experiences with action 𝑎 in state 𝑠 . Together, these measurements form a

vector qretro,𝑎 that has 𝑛retro,𝑎 entries.

C.1.1.3 Prospection

Next, we assume that a tree expansion can be represented as another noisy measurement 𝑞𝑎 of

the true value 𝑄𝑎 of action 𝑎 in state 𝑠:

𝑞𝑎 ∼ N
(
𝑄𝑎, 𝜎

2) . (C.3)

In a tree search algorithm, the noisy measurement may be obtained through a heuristic value

function. It is an open question to what extent heuristic values obtained in practice follow the

normal distribution above and, in particular, if they are unbiased. The core part of our framework

is a statistical model maintained by the agent of the effects of prospective tree search, without

actually doing tree search. Additionally, it is assumed within this statistical model that an itera-

tion of the tree search algorithm working on a branch that starts with action 𝑎 produces a new,

independent measurement of 𝑄𝑎 .
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C.1.2 Inference

The overarching goal of this framework is to allow the agent to decide whether and in which

direction to plan. We take a normative approach, where the agent makes a decision by calculating

the expected gain obtained from making an additional measurement of each action and selecting

the action that maximizes this gain. The algorithm uses Bayesian inference and works as follows:

1. The agent has the constraint of only being able to consider the effects of planning for a

single action at a time. Thus, we consider the problem to be deciding which action to

sample another measurement of the underlying value from. The agent iterates over actions

and computes the value of each action conditioned on sampling a specific action: this results

in no change in the value of the mean for actions that aren’t sampled, and a distribution

over the mean of the action that is sampled.

2. To combine across actions 𝑁 , the agent computes the max distribution over the possible

means (which now has 𝑁 −1 point estimates and a single distribution) of each action given

the new sample, and𝑈𝑎 is the expected value of this max distribution. This is the utility of

sampling, and the process is repeated for all possible actions to sample.

3. Finally, an update rule is used to decide whether it is worthwhile to keep planning. If the

maximum utility across possible samples is less than a fixed cost 𝑐 , then no more planning

is necessary. Otherwise, the agent samples the action that maximizes utility and updates

the posterior for that action accordingly.
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C.1.2.1 Retrospective likelihood

The retrospective likelihood captures the information that the agent has about the Q-values based

on previous experiences. The likelihood we are interested in is over𝑄𝑎 based on the data qretro,𝑎:

L(𝑄𝑎; qretro,𝑎) = 𝑝
(
qretro,𝑎 |𝑄𝑎, 𝜎2

retro
)

=

𝑛retro,𝑎∏
𝑖=1

𝑝
(
𝑞retro,𝑎𝑖 |𝑄𝑎, 𝜎2

retro
)

=

𝑛retro,𝑎∏
𝑖=1
N

(
𝑞retro,𝑎𝑖 ;𝑄𝑎, 𝜎

2
retro

)
∝ N

(
𝑄𝑎;𝑞retro,𝑎,

𝜎2
retro

𝑛retro,𝑎

)
, (C.4)

where 𝑞retro,𝑎 ≡
𝑛retro,𝑎∑︁
𝑖=1

𝑞retro,𝑎𝑖 . This likelihood function captures all the information that the agent

can gain from previous experiences.

C.1.2.2 Prospective likelihood

After 𝑛𝑎 measurements are taken for each action 𝑎, the agent has a vector of measurements q𝑎

with 𝑛𝑎 entries. The prospective likelihood over𝑄𝑎 is then a product of the likelihoods associated

with the individual measurements, similar to the retrospective likelihood:

L(𝑄𝑎; q𝑎) ∝ N
(
𝑄𝑎;𝑞𝑎,

𝜎2

𝑛𝑎

)
, (C.5)

where 𝑞𝑎 ≡
𝑛𝑎∑︁
𝑗=1
𝑞𝑎 𝑗 . For now, we assume 𝑞𝑎 to be known. Later, we will marginalize over all

possible values of 𝑞𝑎 .
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C.1.2.3 Posterior

The posterior is the normalized product of a prior and two likelihoods that we assume to be

independent. We compute the posterior for each action with all currently available information:

𝑝 (𝑄𝑎 |qretro,𝑎, q𝑎) = 𝑝 (𝑄𝑎)𝑝 (qretro,𝑎 |𝑄)𝑝 (q𝑎 |𝑄𝑎)

= N
(
𝑄𝑎; 𝜇𝑎, 𝜎2

𝑎

)
𝜇𝑎 =

𝐽0𝜇0 + 𝐽retro𝑛retro,𝑎𝑞retro,𝑎 + 𝐽𝑛𝑎𝑞𝑎
𝐽𝑎

𝜎2
𝑎 =

1
𝐽𝑎

(C.6)

where we define the following precision quantities:

𝐽retro ≡
1

𝜎2
retro

𝐽 ≡ 1
𝜎2

𝐽0 ≡
1
𝜎2

0

𝐽𝑎 ≡ 𝐽0 + 𝑛retro,𝑎 𝐽retro + 𝑛𝑎 𝐽 . (C.7)

C.1.2.4 Expected value

Next, we rewrite the future posterior if the agent were to make an additional measurement 𝑞′𝑎 .

Under this assumption, the mean and variance of the posterior would be

𝜇′𝑎 =
𝐽0𝜇0 + 𝐽retro𝑛retro,𝑎𝑞retro + 𝐽 (𝑛𝑎𝑞𝑎 + 𝑞′𝑎)

𝐽 ′𝑎

𝜎
′2
𝑎 =

1
𝐽 ′𝑎
. (C.8)
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We can rewrite the future posterior:

𝜇′𝑎 = 𝑘1𝑞
′
𝑎 + 𝑘0 (C.9)

where

𝑘0 ≡
𝐽𝑎𝜇
′
𝑎

𝐽 ′𝑎

𝑘1 ≡
𝐽

𝐽 ′𝑎
. (C.10)

We will also later use the fact that

𝐽 ′𝑎 = 𝐽 + 𝐽𝑎 . (C.11)

C.1.2.5 Distribution of the future mean measurement

Now, the new measurement 𝑞′𝑎 , which the agent receives if they sample another measurement

for that action, is unknown and has to be marginalized over. Conceptually, this is the distribution

over future prospective measurements one step into the future for 𝑎 given current information.

We compute this by marginalizing over the current possible values of 𝑄𝑎:

𝑝 (𝑞′𝑎 |𝑞𝑎, qretro,𝑎) =
∫

𝑝 (𝑞′𝑎 |𝑄)𝑝 (𝑄 |𝑞𝑎, qretro,𝑎)𝑑𝑄𝑎

=

∫
N

(
𝑞′𝑎;𝑄𝑎, 𝜎

2) N (
𝑄𝑎; 𝜇𝑎, 𝜎2

𝑎

)
𝑑𝑄𝑎

= N
(
𝑞′𝑎; 𝜇𝑎, 𝜎

2 + 𝜎2
𝑎

)
. (C.12)
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Finally, we know that the expected value of 𝜇′𝑎 given qretro,𝑎, q𝑎 must be a normal distribution with

the following mean and variance:

E[𝜇′𝑎] = 𝑘1𝜇𝑎 + 𝑘0

=
𝐽 𝜇𝑎 + 𝐽𝑎𝜇𝑎

𝐽 ′𝑎

=
𝜇𝑎 (𝐽 + 𝐽𝑎)

𝐽 ′𝑎

=
𝜇𝑎 𝐽
′
𝑎

𝐽 ′𝑎

= 𝜇𝑎

Var[𝜇′𝑎] = 𝑘2
1
(
𝜎2 + 𝜎2

𝑎

)
=
𝐽 2

𝐽 2
𝑎

(
1
𝐽
+ 1
𝐽𝑎

)
=

𝐽

𝐽 ′𝑎 𝐽𝑎

=
𝐽

𝐽𝑎 (𝐽 + 𝐽𝑎)

=
1

𝐽𝑎 (1 + 𝐽𝑎
𝐽
)
. (C.13)

Note that this implies that, given an additional sample, the mean of the resultant distribution

stays at 𝜇𝑎 while the variance becomes narrower.

C.1.2.6 Expected utility of making another measurement

To combine across actions, we need to compute the expected utility of making another measure-

ment of action 𝑎. First, we compute the maximum of posterior means before making an additional

measurement:

𝑀 ≡ max
𝑎
𝜇𝑎 . (C.14)
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The maximum of posterior means after making an additional measurement of action 𝑎 is

𝑀′𝑎 ≡ max
(
𝜇′𝑎,max

𝑏≠𝑎
𝜇𝑏

)
. (C.15)

This is a random variable because we don’t know 𝜇′𝑎 exactly. However, we can take the expected

value E𝜇′𝑎 [𝑀′𝑎]. We know this distribution from Equation C.13, and can evaluate the expected

value of this quantity via two methods: (1) analytically, by computing the max distribution (as

outlined in the next section) over all actions and taking the mean of the resultant distribution,

and (2) usingMonte-Carlo simulation, where E𝜇′𝑎 is normally distributed. These methods produce

identical solutions, with the analytical method having a run time advantage of about an order of

magnitude over sampling. Within our framework, the mathematical reason why planning is

beneficial is that the expected value of a maximum is greater than the maximum of the expected

values. Finally, the expected utility of making another measurement of action 𝑎, which we call

the utility of sampling, is

𝑈𝑎 = E𝜇′𝑎 [𝑀
′
𝑎] −𝑀. (C.16)

This utility computation has to be repeated across all actions. Then, we propose that the agent

chooses to sample if the maximum utility exceeds a fixed cost 𝑐:

sample if max
𝑎
𝑈𝑎 > 𝑐. (C.17)
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If this holds true, then the agent makes a measurement of the action that maximizes𝑈𝑎 . Denoting

this measurement by 𝑞′𝑎 , we calculate the parameters of the updated posterior for 𝑎, 𝜇′𝑎 and 𝜎′2𝑎 :

𝜇′𝑎 =
𝐽𝑎𝜇𝑎 + 𝐽𝑞′𝑎
𝐽𝑎 + 𝐽

𝜎′2𝑎 =
1

𝐽𝑎 + 𝐽
. (C.18)

All other actions keep the same posterior. Once again, note that here we are using the terms

associated with a new prospective measurement for action 𝑎 rather than any terms for action 𝑎

that are computed virtually in the inference procedure. At this point the agent has selected an

action and sampled it, and the meta-planner can use the updated values to repeat the inference

process to decide if it is worth continuing to plan.

C.1.2.7 Distribution of the maximum of random variables

The distribution of themaximumof randomvariables can in general be computer semi-analytically,

and we briefly recap this derivation in a general form here. We are interested in the distribution

of the maximum variable 𝑀 = max
𝑖
𝑋𝑖 , where the independent, real-valued random variables 𝑋𝑖

have densities 𝑝𝑖 (𝑥) and cumulative distribution functions 𝐹𝑖 (𝑥). We know that 𝑀 ≤ 𝑚 if and

only if𝑀 ≤ 𝑚𝑖 for all 𝑖 . Thus, we can calculate the cumulative distribution function of𝑀 as:

𝐹𝑀 (𝑚) = 𝑃 (𝑀 ≤ 𝑚)

= 𝑃 (𝑋1 ≤ 𝑚, . . . , 𝑋𝑛 ≤ 𝑚)

=

𝑛∏
𝑖=1

𝑃 (𝑋𝑖 ≤ 𝑚)

=

𝑛∏
𝑖=1

𝐹𝑖 (𝑚). (C.19)
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Figure C.1: 2-dimensional representations of sampling probability. (A) Probability of sampling as a func-
tion of the cost per measurement (𝑐) and the number of prospective samples made by the meta-planner.
(B) Interaction between the action gap and number of actions (𝑁 ), for a fixed cost (𝑐 = 0.1). The color
code is two-dimensional: the hue represents probability of sampling and the saturation proportion of total
simulations for the combination of top gap size and 𝑁 .

The density of𝑀 is obtained by differentiation:

𝑝𝑀 (𝑚) =
𝑑𝐹𝑀

𝑑𝑚

=

𝑛∑︁
𝑗=1

𝑝 𝑗 (𝑚)
(∏
𝑖≠ 𝑗

𝐹𝑖 (𝑚)
)

=

(
𝑛∏
𝑖=1

𝐹𝑖 (𝑚)
)

𝑛∑︁
𝑗=1

𝑝 𝑗 (𝑚)
𝐹 𝑗 (𝑚)

. (C.20)

We use this expression to create themax distribution and to compare with an equivalent sampling

solution.

C.2 Model simulations

In all model simulations presented in Chapter 4, we ran the model locally by selecting the range

of parameters we were interested in. The modifiable parameters were as follows: the number of

actions 𝑁 , the fixed cost per sample 𝑐 , the variances attached to the prospective and retrospective

measurements 𝜎2 and 𝜎2
retro respectively, and the average number of retrospective experiences
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Figure C.2: Progression of the action gap. (A) Probability of sampling as a function of the number of
actions available to the agent (𝑁 ). Each line represents a different number of prospective samples having
been taken so far in the sampling process, and simulations were run for a fixed cost (𝑐 = 0.1). (B) Same
as (A) but for the gap between the top two actions the meta-planner is considering.

per action 𝜆. For all simulations, we drew the underlying true 𝑄-values for each action from

a normal distribution with 𝜇 = 0 and 𝜎 = 1, and conducted the analytical computation of the

max distribution with 1, 000 samples. We also ran enough simulations per analysis so that there

was no noise in the results averaged across simulations, typically either 1, 000 or 10, 000. For

the simulations with retrospection, we drew the number of retrospective experiences, 𝑛retro,𝑎 ,

independently per action from a Poisson distribution:

𝑛retro,𝑎 =
𝜆𝑛retro,𝑎𝑒−𝜆

𝑛retro,𝑎!
(C.21)

where 𝜆 is the expected value over the number of retrospective experiences desired.

To visualize the meta-planner’s sampling probability more compactly, we computed its pre-

dictions as a function of both cost of sampling (𝑐), number of actions (𝑁 ), and action gap. In

Figure C.1A, we show that deeper planning is beneficial with low costs and when less samples

have already been taken. We elected to not include the simulations highlighting the role of cost

in Chapter 4.2, since its effect on sampling is straightforward. In Figure C.1B, we replicated our

analysis regarding the action gap from the main text to emphasize that sampling is beneficial

when more actions are available and thus the action gap is smaller. Note that this analysis also

includes the proportion of simulations that the model encountered for each combination of top
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gap and 𝑁 . In Figure C.2 we investigated the progression of the action gap, namely that probabil-

ity of sampling increased with number of alternatives and decreased with gap. This additionally

shows how sampling is almost always valuable regardless of these two quantities on the first

model iteration, and then shifts to the expected trend as more samples are taken.

C.3 Additional behavioral analyses

We conducted a set of additional analyses to show that response times in early stages of a 4-in-a-

row game follow patterns predicted by retrospective learning. We first highlight the importance

of retrospection in the meta-planner’s qualitative description of human response times as a func-

tion of move number. Specifically, we show that removing the exponential decay function for past

experiences altogether leads to a monotonically decreasing prediction for response times (Figure

C.3A). This is expected in the context of the meta-planner, as less alternatives to consider will

typically lead to smaller action gaps and number of samples. For the exponential decay function,

we selected a formulation that would roughly mimic human experiences in the task:

𝜆 = 𝑎(1 − 𝑟 )𝑖 (C.22)

where we fixed the rate of decay 𝑟 to 0.25 and the initial value 𝑎 to 10 while varying the time

interval 𝑖 with move number. This results in a quickly decreasing 𝜆, which we use to dictate

the number of past experiences that the meta-planner has, that starts at 10 on the first move

of the game and decreases to less than 1 within a few moves. We also repeated our analysis

which captured the fact that human third move response times are indistinguishable from the

meta-planner’s predictions with more experience, validating that it holds for other move num-

bers (Figure C.3B). In Figure C.3C, we show that user response times across the first 7 moves

were, on average, longer after losses rather than wins. Furthermore, we verified that our result
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Figure C.3: Evidence for retrospective response times in 4-in-a-row. (A) Average number of samples
the meta-planner makes throughout gameplay with retrospection (blue) and without retrospection (dark
blue). As in the main text, the meta-planner is simulated with retrospective experience following a de-
creasing exponential withmove number. All subsequent panels are for all users in the data set. (B)Average
human response times (black) and number of samples the meta-planner makes (blue) on the first move
of gameplay as a function of the number of past experiences. (C) Average response times across the first
7 moves of a game directly following a loss, draw, or win. Error bars denote s.e.m. (D) Average third
move response times as a function of the number of games in the past that the same 2-piece board state
occurred (blue) compared to novel 2-piece board states (red). Shading denotes s.e.m.

from the main text showing that third move response times decreased significantly when users

encountered repeated 2-piece board states was not solely due to recent memory of encountered

states. To do this, we averaged third move response times based on the number of games in the

past that the same 2-piece board state occurred, and found that response times were consistent

regardless of how long ago a given state had been seen (Figure C.3D). These response times were

also drastically lower than for novel 2-piece board states.

The size of our data set allowed us to uncover clear evidence for retrospective decision-making

in early-game positions despite using a task with such a large state space where states don’t

often repeat. We found that users were significantly more likely to repeat their opening moves
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Figure C.4: Evidence for retrospective decision-making in 4-in-a-row. Each panel contains the probability
that all users in the data set that encountered the given board state in subsequent games repeated a move
directly after a loss, draw, or win as well as the distribution of the selected moves. Error bars denote s.e.m.
The user pieces are in black while the AI pieces are in white. (A) The first move (10, 875, 547 users). (B)
The third move following the most frequent 2-piece board states (from left to right: 213, 042, 174, 606, and
171, 314 users). (C) The fifth move following the most frequent 4-piece board states (from left to right:
27, 522 and 25, 452 users). (D) The seventh move following the most frequent 6-piece board states (from
left to right: 7, 756 and 7, 319 users).

following wins rather than losses, and that these moves were primarily distributed in the center

or corners of the board (Figure C.4A). This effect continued on the third move, where users most

often elected to play in the center positions closest to the two pieces already on the board (Figure

C.4B). On the fifth and seventh moves, however, the proportion of move repetitions based on

game outcome were not always significant, varying by specific board position (Figure C.4C-D).

These population-wide trends suggest that people make decisions partially based on whether or

not an opening strategy was successful in previous games in their first two or three moves, and

then begin to utilize alternative strategies in subsequent moves when board positions are more

likely to be unique. This set of results motivated the derivation of the meta-planner, as the need

for a framework that integrates prospective and retrospective information became apparent.
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D | Appendix for Chapter 5

D.1 Methods

The analyses in Section 5.1 were conducted for different subsets of the large-scale mobile data set.

This is because each analysis was naturally conditioned by a range of number of games played

per user, which we summarize in Table D.1. For example, any analysis that required Elo rating

estimation must exclude users who played less than 20 games, and any analysis that investigated

changes in Elo ratings required a minimum of 40 games played in order to observe at least a single

change in ratings from 20 to 40 games of experience. Other analyses are conditioned on specific

experience ranges, and in some cases are shown as references for individual users. In Figure D.1,

we provide the distribution for each quantity used in our results across the entire data set: total

number of games played, final Elo ratings, change in Elo ratings, initial Elo ratings, inter-game

intervals, reponse times, opponent Elo ratings, relative Elo ratings, and change in relative Elo

ratings.

For any playing strength analysis, we used a common baseline to compute Elo ratings across

all experimental data as before, split into blocks of 20 games. This outputs an Elo rating for each

user in every block as well as an estimate of the overall opponents’ ability faced by the same user

in that block. To compute relative Elo ratings, we simply calculated the difference between these

two quantities:

𝑅relative = 𝑅user − 𝑅opponent (D.1)
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Figure D.1: The distribution for each quantity used for the analyses in Section 5.1. The number of users
and range of games played per user for each panel is available in Table D.1. (A) Histogram of the total
number of games played by users in the data set. (B) Same as (A), but for Elo ratings in the final block of
gameplay. (C) Same as (A), but for overall Elo ratings across all blocks. (D) Same as (A), but for change
in Elo ratings from block to block. (E) Same as (A), but for Elo ratings in the first block of gameplay. (F)
Same as (A), but for the inter-game interval (IGI) in minutes between every game. (G) Same as (A), but
for the response time in seconds of every move. (H) Same as (A), but for opponent Elo ratings across all
blocks. (I) Same as (A), but for the difference between user and opponent Elo ratings across all blocks. (J)
Same as (A), but for the change in difference between user and opponent Elo ratings from block to block.

where 𝑅 stands for Elo rating. For the upper bound agent analysis, we computed the exact same

joint Elo estimation, but added a pseudo-userwhowon every game against opponents. To roughly

mimic our staircasing procedure, the class of computer agent that the pseudo-user was matched

with incremented by 1 up until 7 every 20 games.

Since Elo rating estimation is particularly central to this chapter, we review the fundamental

methods that Bayeselo employs here [Hunter 2004]. The Elo formula provides the expected result

𝐸 of a game as a function of the rating difference 𝐷 between players:

𝐸 =
1

1 + 10
𝐷

400
. (D.2)

The Elo rating system assumes that the underlying strength of a player can be described by a
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Figure Panel Number of users Number of games played per user
5.1 B 104,681 20-99
5.2 A 107,769 20-119
5.2 B 10,698 100-499
5.2 C 1 400
5.2 D 104,681 20-99
5.3 A 115,968 20+
5.3 B 115,968 20+
5.3 C 48,156 40+
5.3 D 104,681 20-99
5.4 A 50 20+
5.4 B 115,968 20+
5.4 C 115,968 20+
5.4 D 3,088 100-119
5.4 E 104,681 20-99
5.5 A 107,769 20-119
5.5 B 3,088 100-119
5.5 C 115,968 20+
5.5 D 48,156 40+
5.5 E 104,681 20-99
D.1 A 1,234,844 1+
D.1 B 115,968 20+
D.1 C 115,968 20+
D.1 D 48,156 40+
D.1 E 115,968 20+
D.1 F 1,234,844 1+
D.1 G 1,234,844 1+
D.1 H 115,968 20+
D.1 I 115,968 20+
D.1 J 48,156 40+
D.2 A 4 1000+
D.2 B 115,968 20+
D.2 C 115,968 20+
D.3 A 1,234,844 1+
D.3 B 1,234,844 1+
D.3 C 1,234,844 1+

Table D.1: The number of users and range of games played per user for each analysis in Section 5.1 and
Appendices D.1 and D.2. We label these values by figure number and panel letter.
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single value, and that game results are drawn according to the formula above. The problem is

then to estimate the Elo rating of a set of players from the observation of results of their games.

The Elo formula above can be reversed to obtain an estimation of the rating difference between

two players as a function of the average score. This is traditionally done in two steps:

1. A fixed-point equation is solved iteratively such that the rating of every player is in ac-

cordance to the reverse Elo formula. This assumes that an expected result is equal to the

average score against an opponent whose Elo rating is equal to the average opponent, and

is done under a constraint of a given average Elo over all players.

2. Uncertainty is estimated as the variance of score.

The main flaw of this approach is in the estimation of uncertainty. In other words, the expected

result against two players is not equal to the expected result against one single player whose

rating is the average of the two players. More concretely, 10 wins and 10 losses against a 1500

Elo opponent should result in less uncertainty than 10 wins against a 500 Elo opponent and 10

losses against a 2500 Elo opponent.

Bayeselo takes a Bayesian approach to ameliorate these problems, and consists of choosing a

prior likelihood distribution over Elo ratings and computing a posterior distribution as a function

of the observed results. Formally, we can write this as:

𝑃 (Elos|Results) ∝ 𝑃 (Results|Elos) (D.3)

where the prior 𝑃 (Elos) is assumed to be uniform. In order to actually perform this calculation,

we need the probability of a win, draw, and loss as a function of the Elo difference for two players,
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black and white:

𝑃 (White wins) = 𝑓 (Eloblack − Elowhite − Eloadvantage + Elodraw)

𝑃 (Black wins) = 𝑓 (Elowhite − Eloblack − Eloadvantage + Elodraw)

𝑃 (Draw) = 1 − 𝑃 (White wins) − 𝑃 (Black wins) (D.4)

where 𝑓 is the Elo formula. Eloadvantage is the advantage of playing first while Elodraw) indicates

how likely draws are. These two quantites have been estimated empirically with 95% confidence

intervals as 32.8 ± 4.0 and 97.3 ± 2.0 respectively. Bayeselo then finds the maximum-likelihood

ratings using a minorization-maximization algorithm. The difference in the ratings between two

players serves as a predictor of the outcome of a match. For example, two players with equal

ratings who play against each other are expected to score an equal number of wins. A player

whose rating is 100 points greater than their opponent’s is expected to score 64%, and if the

difference is 200 points then the expected score for the stronger player is 76%.

D.2 Control and validation analyses

To validate the use of Elo ratings as a measure of playing strength in 4-in-a-row, we conducted

a number of analyses. In Figure D.2A, we show Elo ratings over time for 4 users very experi-

enced users who had played at least 1, 000 games each. Since we are interested in characterizing

population level learning, we primarily visualize trajectories averaged across the population. In-

dividual learning trajectories are noisy but still increase gradually as more games are played, an

assumption that carries over into our model. We also found that estimated Elo ratings within a

given block and win percentage within that same block were highly correlated (𝜌 = 0.708, Figure

D.2B). This is expected, as users should be stronger players the more games they win. We further

conditioned this on number of blocks that had each combination of Elo rating and win percent-
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B C
win streakloss streak

A

Figure D.2: Analyses to validate the use of Elo ratings as a measure of task performance. The number of
users and range of games played per user for each panel is available in Table D.1. (A) Individual learning
trajectories for 4 experienced users who played at least 1, 000 games. (B) Histogram of the relationship
between Elo ratings and win percentage for every block in the data set. (C) Histogram of the number of
consecutive wins (orange) or losses (purple) for each user before dropout.

age, highlighting that extremely low or high values occured much less often than values closer to

0 Elo rating or a win rate of 50%. This further validates that users were generally matched against

opponents of equal skill level where they won about half of their games. Finally, we revisited the

idea of a peak-end rule with results rather than ratings. Namely, we computed the number of

consecutive wins and consecutive losses leading up to each user’s final game (Figure D.2C). This

analysis suggested that users more often quit after a comparable number of wins as opposed to

losses. Additionally, a number of people in the data set dropped out after larger wins streaks up

to 10, which didn’t occur for losses. This corroborates our finding that people were more likely

to quit after large increases in their playing strength.

Another important control was to ensure that our results weren’t biased by the fact that subset

of data we analyzed has an arbitrary cutoff. In principle, many users could have still been actively

playing games after April 2019, meaning that their gameplay masquerades as dropout when it

is not. To check that this wasn’t the case for the majority of our data set, we computed two

quantities: the inter-game interval (IGI) between the first and last game of play (Figure D.3A) and

the proximity of the last recorded game to the end date of data collection (Figure D.3B). Ideally, we

would find that the time from people’s last game until the end of data collection is, for most users,
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A B C

Figure D.3: Analyses to control for edge effects in dropout. The number of users and range of games
played per user for each panel is available in Table D.1. (A) Histogram of the inter-game interval (IGI) in
days between the first and last game by users in the data set. (B) Histogram of the time in days between
each user’s last game and the final day of data collection. (C) 2-dimensional histogram of the intersection
between the quantities in (A) and (B).

much longer than the entire duration of their playing history. Indeed, this was overwhelmingly

true throughout the data set (Figure D.3C). Given the large number of users in each analysis,

this control suggested that most of the behavior we consider to be dropout is not corrupted by

significant edge effects.

D.3 Model simulations

To implement our model of task engagement and performance, we use the equations in Section

5.2. This requires a prior on Elo ratings, which we formalize as a normal distributionwith 𝜇 = −50

and𝜎 = 125 approximating the initial Elo rating distribution in Figure D.1E. To predict the elapsed

time between games for each user, we use a Weibull distribution:

𝑎 =
𝑘

𝛼

(
𝑥

𝛼

𝑘−1
)
𝑒−

𝑥
𝛼
𝑘

(D.5)

where 𝑘 is the shape parameter and 𝛼 is the scale parameter of the distribution. We assume the

shape and scale parameters vary per player and are drawn from two separate normal distribu-
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A B

Figure D.4: The model reproduces the time course of people’s gameplay. (A)Model simulations replicat-
ing the raster plot for the time course of play for 50 randomly selected pseudo-users from Figure 5.4A. (B)
Same as (A), but for the coefficient of variation (CV), or the ratio of the standard deviation and the mean
of the inter-game interval (IGI), visualized as a histogram from Figure 5.4B.

tions, both with 𝜇 = 0 and the former with 𝜎 = 2 and the latter with 𝜎 = 20. Similarly, we draw

individual learning rates from a normal with 𝜇 = 0 and 𝜎 = 0.01. Since none of these values

can be negative, we truncate the distribution by taking the absolute value of each draw. The re-

maining fixed parameters that we use to run the model forward are 𝜆forgetting = 0.001, 𝑅0 = −600,

𝑅∞ = 600, and 𝜎noise = 10. The baseline and ceiling ratings are based on the upper bound agent as

well as the observed minimum and maximum empirical Elo ratings from Figure D.1C. The 𝜆 and

noise parameters are selected to provide a reasonable fit to data after extensive testing. We ran

the model simulations locally per analysis for 100, 000 pseudo-users. To compute game outcomes,

we could use another prior to approximate the relative Elo rating distribution in Figure D.1I. The

output of a draw from this distribution would determine the difference in ratings between a user

and their opponent. Then, the Elo equation would be used to calculate the outcome of a game

between the two players. In the future, we will use maximum likelihood estimation to obtain

parameters by fitting the model to individual games and elapsed times.

In Figure D.4 we validate that the model simulations can capture the physical time between

games. To do so, we show a raster plot generated by pseudo-users as well as the distribution
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of the coefficient of variation (CV) across the inter-game interval (IGI) for all pseudo-users. This

provides evidence that our model not only accounts for the main learning and motivation results,

but also the full time course of people’s playing history.
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