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Highlights 
People have the ability to form complex 
multi-step plans. Real-world environ-
ments often require mental simulation of 
the future outcomes associated with 
available actions in order to make good 
decisions. 

Decision tree search has emerged as the 
primary computational framework for 
modeling human planning in cognitive 
science. As a result, various mechanisms 
involved in planning have been identified 
Humans possess a remarkable ability to form sophisticated multi-step plans 
even in complex environments. In this review article, we consider efforts that at-
tempt to characterize the mechanisms underlying human planning using a com-
putational framework, primarily focusing on methods that search a tree of 
possible solutions. These studies range from experimental probes for heuristics 
that people employ while thinking ahead to normative models for reducing the 
computational costs of planning. Additionally, we examine the recent successes 
of artificial intelligence in the domain of planning and how these innovations can 
be applied to better understand human sequential decision-making. As exam-
ples, we highlight this approach in two tasks that require planning many steps 
into the future, namely 4-in-a-row and chess. 
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and normative approaches have 
emerged to address how people effi-
ciently use cognitive resources while 
thinking ahead. 

Artificial intelligence has developed pow-
erful algorithms for solving planning 
problems in large state spaces and 
these innovations can be leveraged to 
more deeply understand how people 
plan in tasks where evaluating every 
course of action is intractable.
Planning is a hallmark of intelligence 
In our everyday lives, we must constantly make decisions by planning (see Glossary), or mentally 
simulating different possible courses of action. Deciding which courses to take in college, choos-
ing between different job opportunities, or even just figuring out the logistics of an upcoming trip 
are all settings where considering the consequences of our actions is beneficial. This process is 
made all the more demanding by the fact that we live in a complex world, one in which various 
events are interconnected throughout time with outcomes that are difficult to predict. Machines 
operating in such a world also need to solve planning problems, and research in artificial intelli-
gence has resulted in algorithms that provide a rich source of hypotheses about human cognition. 

A core challenge in the study of human planning is that planning is an internal and inherently un-
observable process. Thus, while attempts to directly measure multi-step planning such as 
process-tracing paradigms exist, the primary method for inferring the algorithms underlying this 
process has been to fit a computational model to behavior and evaluate how closely the model 
predicts people’s choices. Using this method, the dominant framework that has emerged for 
modeling planning is tree search. Broadly speaking, planning algorithms in this space can search 
much deeper ahead than a single step by constructing a decision tree that contains many ac-
tions leading to different state and reward trajectories. While traversing this tree leads to additional 
information about currently available actions, its size is exponential in the number of choice points, 
making it infeasible to evaluate every possible sequence. For example, if an agent has to make a 

sequence of N decisions with K options at each step, then the total number of sequences is 
Therefore, a growing body of literature has focused on characterizing the algorithms that allow 
people to plan efficiently. 

KN . 

Planning problems formalized as search over a decision tree have been similarly influential in ar-
tificial intelligence research. The primary distinction between approaches to planning in cognitive 
science and artificial intelligence is that algorithms in the latter field do not need to be constrained 
by the computational limitations of the human mind and can instead be engineered for task
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Glossary 
Artificial neural networks: a class of 
models consisting of an architecture, 
which describes how different units are 
connected, and a learning algorithm, 
which is used to learn the appropriate 
connection weights for the model’s 
parameters. 
Best-first search: a heuristic search 
algorithm that iteratively selects a 
sequence of the most promising actions. 
Decision tree: a  representation  of  a  
planning problem where nodes denotes 
states and arrows possible actions that 
could be made .
Heuristic search: a class of algorithms 
that use a heuristic function to 
approximate the values of states and 
construct a partial decision tree. 
Markov decision process: a 
framework for modeling sequential 
decision-making that defines how an 
agent interacts with the environment 
using a set of states, a set of actions, the 
transition probabilities between states 
conditioned on actions, and the rewards 
received when making an action in a 
given state. 
Model-based reinforcement 
learning: learning a model of an 
environment’s dynamics in order to plan. 
Model-free reinforcement learning: 
learning directly from an environment via 
repeated association of actions with 
subsequent rewards. 
Monte Carlo tree search: a heuristic 
search algorithm that estimates action 
values by averaging the returns of many 
simulated trajectories that are balanced 
between searching in promising and 
unexplored areas of the state space. 
Planning: the process of making a 
decision by mentally simulating the 
future consequences associated with 
potential courses of action and selecting 
the one that maximizes expected value. 
Successor representation: a 
representation of a planning problem 
that summarizes the long-range 
predictive relationships between states 
of an environment in order to balance 
efficiency and flexibility.
performance. Therefore, artificial intelligence research has fully embraced the challenge of devel-
oping powerful algorithms to solve a wide array of problems in large state spaces. Throughout the 
history of artificial intelligence, algorithms such as heuristic search and Monte Carlo tree 
search have been implemented to play zero-sum, two-player games like tic-tac-toe, chess, 
and Go. In recent years, modern techniques including artificial neural networks have further 
augmented the capabilities of these search methods to achieve superhuman performance on 
complex planning problems.

Here, we review the literature that aims to understand the cognitive mechanisms by which people 
plan sequences of actions and discuss how recent advancements in both computational model-
ing and data collection have started to change that understanding. We begin by focusing on the 
experimental tasks that have been leveraged to explain how people construct and navigate deci-
sion trees, resulting in evidence for a wide range of concepts such as arbitration and pruning dur-
ing search. Since exhaustive search is often intractable, normative approaches to modeling 
human planning have emerged to more precisely specify the underlying computations and repre-
sentations involved in this process by, for example, casting planning as a problem of efficiently 
using available cognitive or informational resources. Then, we discuss how innovations in artificial 
intelligence, including heuristic search and artificial neural networks, can be used to more deeply 
understand how people form multi-step plans. Specifically, we highlight two illustrative case 
studies: 4-in-a-row, a combinatorial game of intermediate complexity, and chess, a more 
complex game that has a rich history in experimental psychology. This approach, coupled with 
prior findings, presents a promising path forward for yielding more detailed characterizations of 
the cognitive processes underlying human planning. 

Characterizing the cognitive mechanisms underlying human planning 
To review progress that has been made thus far in understanding the cognitive mechanisms in-
volved in human planning, we discuss experimental tasks as well as normative models that have 
provided insight into this process. We then turn our attention to representations beyond tree 
search that have been useful in characterizing how people plan. 

Experimental tasks and heuristics 
Perhaps the most influential sequential decision-making paradigm, and the logical starting point 
for reviewing experimental findings on human planning, is the two-step task [1] (for an overview of 
studies on the neural basis of planning, see Box 1). In this task, participants make a sequence of 
two binary choices. In the first decision stage, the choice between two stimuli leads probabilisti-
cally to another set of states that, following a second decision, yield a monetary reward. The re-
ward probabilities fluctuate slowly, so participants have to constantly adapt the values they 
associate with the stimuli and adjust their decisions accordingly. Notably, this is a simple task 
in which model-free reinforcement learning and model-based reinforcement learning 
make different behavioral predictions. When a reward is received, a model-based agent has 
the capacity to take into account whether it arrived there through a common or rare transition, 
whereas a model-free learner does not. In the seminal work in which the task was introduced, 
it was found that people use a mixture of model-based and model-free learning [1]. 

Recent work has refined interpretation of behavior in the two-step task in at least two ways. First, 
several studies have challenged the assumption that behavioral signatures cleanly reflect either 
model-based or model-free strategies. Some have argued that what appears to be model-
based behavior could, in fact, emerge from more sophisticated forms of model-free learning 
[2,3]. Conversely, other work has argued that apparent model-free behavior may reflect model-
based planning under incorrect assumptions about the task structure [4]. Second, the
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Box 1. The neural basis of multi-step planning 

Recent years have seen a surge in experimental studies aimed at understanding the neural mechanisms of multi-step plan-
ning in the brain. This line of work has shown that a wide range of neural structures that contribute to associative learning, 
food foraging, and spatial navigation are implicated in planning as well. 

Evidence suggests that in the two-step task, people’s arbitration between model-free and model-based strategies is in-
fluenced by dopamine precursors [87]. Another study dissociated neural correlates of reward and state prediction errors 
by extending the two-step task to include more second-level states and introducing third-level states that deterministically 
lead to reward [88]. In a two-player variant of the task, the transitions from the first- to second-level states were made by an 
adversarial computer agent. This allowed for the identification of neural correlates of the values of individual branching 
steps in a minimax decision tree [89], and further evidence for the neural substrates of planning in animals has been found 
in different adaptations of the task [90–92]. 

Historically, a cornerstone of the empirical study of sequential decision-making was Tolman’s finding that rats navigating in 
a maze use data gathered from free exploration to build a mental map of their environment that they can subsequently use 
for efficient, goal-directed planning [93]. Following this, the activity of hippocampal place cells was decoded to determine 
what part of space is being represented on a moment-to-moment basis. When a rat pauses at a choice point in a maze, 
these representations sweep forward along the possible paths that the animal can take [94]. Furthermore, the spatial tra-
jectories represented by these sweeps closely correspond to the rat’s subsequent navigational behavior [95]. Several the-
oretical studies have proposed that this non-local hippocampal activity reflects simulation of future states used for planning 
[96,97], demonstrating that patterns in which non-local locations are re-activated can be explained as those which are 
most useful for computing decision values. 

Recent work has begun to uncover relationships between this sort of non-local neural activity, associated with simulation, 
and planning behavior in humans. Both functional magnetic resonance imaging and magnetoencephalography (MEG) 
have revealed a relationship between the simulation of outcomes in the brain and people’s decisions [5,98,99]. Replay-like 
patterns of sequential neural activity can be decoded from visual cortex and have been linked to both decision-time plan-
ning [100,101] and planning computations that occur at reward receipt [7]. These sequential neural activity patterns have 
been measured as unfolding rapidly, with lags between simulated steps occurring between 40 and 200 ms. Novel tech-
niques for analyzing MEG have uncovered a slower process of step-by-step simulation, likely more aligned with our con-
scious experience of planning, on the order of 800 ms per state [6]. This process was found to occur in hippocampus and 
later consolidate in prefrontal cortex. Whether these fast and slow simulation processes subserve distinct computational 
roles in planning remains an open question. 
conception of when model-based computations occur has been expanded. While simulation 
supporting planning often occurs during deliberation at the time of choice [5,6], it can also 
occur at the time of reward receipt [7] or even offline during rest periods between trials [8]. The 
timing and direction of planning can vary systematically with task demands and context [9,10].

Arbitration between model-based and model-free algorithms, as contextualized by the two-step 
task, is a solution to the problem of deciding which of these two algorithms should be used. To 
choose an action in a given state, a model-based system mentally simulates the consequences 
of possible actions multiple steps into the future using a decision tree, whereas the model-free 
system considers the outcome of actions taken in the same or similar states in past experience. 
These dual systems have been discussed under various names and implementations, including 
habitual and goal-directed control of learned behavioral patterns [11,12]. The model-based sys-
tem is slow and computationally expensive, but can determine high-value actions from any state, 
including ones that have never been previously encountered. Alternatively, the model-free system 
is fast but needs previous experience to inform its policy. Note that these systems model choices 
and not response times, and, as such, speed is derived from the implementation of these algo-
rithms. In order to combine information from these systems, people may utilize the uncertainty es-
timates provided by both systems [13,14] or balance the search time and accuracy associated 
with each system [15,16]. A related problem is how these systems can benefit from each other’s 
computations, for which one solution is to allow the model-free system to learn not only from di-
rect experience, but also from computations made by the model-based system [17,18].
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Beyond the two-step task, the study of human planning has employed a wide range of experi-
mental tasks, and we cover a non-exhaustive list here. While most research has relied on planning 
tasks of limited complexity compared to those used in artificial intelligence, this has facilitated the 
usage of computational frameworks, which in turn have led to substantial progress in under-
standing the algorithmic mechanisms that people use to plan. One idea that emerged in a series 
of papers is that planning can be conceptualized as probabilistic inference, where the goal is to 
infer a decision policy which could lead to a conditioned, imagined, high return [19–21]. This no-
tion is also at the core of the active inference approach to planning, which frames decision-
making as well as many aspects of cognition in general as problems of probabilistic inference 
[22]. Planning as inference has been tested in a decision task where participants had to make 
a series of choices between items embedded in a tree structure that they had previously ranked 
by desirability [23]. Behavior was captured by noisy evidence integration implementing probabi-
listic inference while treating each path through the decision tree as a competitor in a bounded 
accumulation process. 

In another goal-directed decision-making task, participants were asked to make a sequence of 
multiple two-alternative choices by which they traversed a graph. Each transition incurred a re-
ward, which could be either positive or negative, and the task was designed such that the optimal 
policy required taking large negative rewards to obtain positive future rewards. This revealed that 
people plan along multiple branches in a decision tree, but eliminate unpromising branches by 
pruning and decompose the task into a hierarchy of subtasks [24,25]. Human planning has 
also been studied in a fast-paced, dynamic environment where participants watched a triangular 
lattice of disks of different sizes scroll down a touchscreen and traced the most rewarding path 
[26]. Participants received a reward proportional to the size of all disks on that trajectory, and 
human behavior was found to be consistent with planning several steps into the future. Notably, 
participants in this task preferred to reduce their depth of computation or increase the recalcula-
tion period rather than sacrifice the precision of computation. This is one example of tradeoffs in 
planning computations, where resource limitations require balancing efficiency and accuracy. 

Normative and optimal approaches 
An outstanding problem that has not been directly addressed by the studies in the previous sec-
tion is how people are able to plan well despite the huge number of actions and associated out-
comes to evaluate under time and resource constraints. One way to frame the results covered 
thus far is in terms of experimental findings (Figure 1A). Arbitration between model-based and 
model-free reinforcement learning poses the question of whether to plan or rely on experience, 
and one proposal for how to implement a planner is via probabilistic inference. Heuristics such 
as pruning or depth-limited search serve to reduce the costs associated with planning, a depen-
dence that has been cited as far back as one of the earliest attempts to replicate human-like in-
telligence in a computer [27,28]. Ultimately, these are a direct result of researchers proposing and 
testing different hypotheses derived from intuition across planning tasks as opposed to a more 
principled approach that could explain multiple findings. 

In many domains, progress has been made by analyzing optimal solutions to a problem that a 
cognitive system is meant to solve [29,30]. For planning, this means addressing the metalevel 
problem, which is to determine whether and in which direction the tree should be expanded. Nor-
mative approaches to modeling human planning are fairly sparse, although there have been a 
number of recent attempts (Figure 1B). A commonality among several of these is that an agent 
maintains a belief over values associated with each action, and the effect of planning is to de-
crease uncertainty. This can in turn lead to better choices and higher rewards. Models designed 
in this manner are subtly distinct in the assumptions that are made in order to derive the optimal
4 Trends in Cognitive Sciences, Month 2025, Vol. xx, No. xx
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Arbitration Evidence integration Pruning 

Plan-until-habit 
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Meta-planning Deep imagination 

OR 

Experimental findings related to human planning 

Normative algorithms for human planning 
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OR 
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Figure 1. Mechanisms for human decision tree search. (A) Experimental findings related to human planning including 
arbitration between model-based and model-free reinforcement learning algorithms [1], treating paths through a decision tree 
as competitors in a bounded accumulation process [23], eliminating unpromising branches of the decision tree via pruning 
[24], and reducing the depth of search in a decision tree [26]. (B) Normative algorithms for human planning including the 
execution of forward search up to a certain depth in a decision tree before exploiting habitual values [32], solving the 
metalevel problem of determining in which direction to plan via resource rationality [36] or information sampling [37], and 
optimizing the tradeoff between breadth and depth in decision trees [39]. 
planning strategy and in the mathematical tools used to formalize the meta-planning problem. 
One example is the plan-until-habit scheme, which executes forward search up to some depth 
and then exploits heuristic values from a habitual system as proxies for consequences that 
may arise further into the future [31,32]. This framework is designed to optimally trade off 
speed and accuracy under the assumption that deeper planning leads to more accurate evalua-
tions, but at the cost of slower decision-making. The critical value to be computed when deciding 
if to expand the decision tree in a certain trajectory is whether a new piece of information could 
change the agent’s decision about what action to take and how much extra value is expected 
to be gained by that policy improvement. This results in an expansion metric that is cheap to com-
pute, but relies on cached values that summarize past experiences at the frontier of the decision 
tree. The plan-until-habit scheme is close in form to arbitration between model-based and model-
free reinforcement learning, and can explain several behavioral patterns in grid-world environ-
ments and reproduce results in the task from [24], namely the effect of time pressure on the 
depth of planning, the effect of reward magnitudes on the direction of planning, and the gradual 
shift from goal-directed to habitual behavior during training. 

An alternative approach originates from the field of resource rationality, which strives towards op-
timality by deriving models of behavior that take into account which cognitive operations are avail-
able to people, how long they take, and how costly they are [33–35]. Using a process-tracing 
paradigm, the conceptual and technical tools of a Markov decision process can be leveraged 
to solve the sequential decision problem of constructing a decision tree [36]. A third framework 
starts by explicitly mapping the meta-planning problem onto one of information search, where 
the objective is to choose the single most rewarding option given a number of alternatives [37]. 
Both information search and planning are fundamentally about improving the selection of future
Trends in Cognitive Sciences, Month 2025, Vol. xx, No. xx 5
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actions, with the distinction that sampling information is an overt action in the real world while 
planning requires mental simulation. Thus, planning is a form of internal information search that 
combines past experiences with simulation, and tractable Bayesian models can be derived in 
this setting to decide which action to plan for. Note that neither of these specify a process-level 
model of human planning, which is an important direction for future work. 

A final option is to avoid modeling the full metalevel problem and instead evaluate the effective-
ness of a search strategy to determine in which conditions it would be favored. Recent work 
has tackled the breadth–depth dilemma, or the tradeoff between evaluating many different op-
tions as opposed to gaining more information about a smaller number of options when faced 
with a decision [38,39]. In large decision trees, the optimal policy is to allocate few samples per 
level so that deep levels can be reached, with the exception being poor environments and at 
low capacity where it is marginally better to broadly sample branches. 

Representation 
While we have focused almost exclusively on heuristics and normative algorithms that operate on 
decision trees until now, there are numerous recent findings that characterize an additional as-
pect of human planning: representation. This crucial component of planning is neglected in 
most prior studies, which assume complete and fixed task representations. However, efficient 
and flexible planning might also need to control these representations in order to quickly simplify 
and more easily reason about problems. One possibility is that people represent planning prob-
lems by breaking them down into smaller components. This decomposition can be based on 
clusters of states that support hierarchical planning [40] or on resource-rational tradeoffs [41]. 
Further evidence for hierarchical planning has been found via an experimental paradigm that 
uses program induction [42]. A related idea is that of value-guided construals, which characterize 
how an optimal cognitively limited decision-maker balances the complexity of a representation 
and its use for planning and acting [43]. This model posits that task representations can be con-
trolled and that such control allows people to construct a simplified mental representation of a 
problem that is sufficient to solve it. Thus far we have discussed decision trees as the primary 
cognitive and computational representation of how people plan, but there may be tasks that re-
quire planning and not tree search. 

An alternative for thinking about representation while planning is the successor representation, 
an algorithm that was initially introduced as a method for generalization in reinforcement learning 
[44]. The successor representation balances flexibility and efficiency via multi-step representation 
learning, storing long-term predictions about future events. When faced with a decision, how 
often successor states are expected to be visited can be combined with a reward function to 
evaluate an action. The successor representation can thus appropriately respond to distal reward 
changes and achieve some of the flexibility associated with model-based reinforcement learning 
without confronting the computational burden of fully planning [3,45]. This concept has been iter-
ated on to make it more flexible in response to changes [46], enable learning of prospective and 
retrospective cognitive maps [47], and adaptively deploy forward and backward prediction [9]. 
The successor representation is closely related to work on task decomposition, as both involve 
simplifying planning over time through temporal abstraction [48]. More specifically, multiple tem-
poral steps of prediction are accomplished in fewer steps of simulation by utilizing a type of task 
model that represents temporally abstract transitions, linking actions with events that occur over 
multiple future timesteps. Viewed through this lens, planning with the successor representation, 
where the expected future occupancy of all states is computed in a single step, and planning 
by simulating one transition at a time can be seen as two ends of a continuum defining the gran-
ularity of simulation. Intermediate forms of temporal abstraction, such as those explored in
6 Trends in Cognitive Sciences, Month 2025, Vol. xx, No. xx
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frameworks of task decomposition and hierarchical planning, strike a balance between these ex-
tremes. They allow simulation at an intermediate level of coarseness: larger than single-step tran-
sitions but more fine-grained than the successor representation, by grouping multiple low-level 
actions into higher-level, temporally extended transitions. Overall, the computational approach 
to studying planning in humans continues to be an active area of research, with contributions 
guided by disparate task environments, the interplay between heuristics and optimality, and 
how people represent problems while planning. 

Using artificial intelligence to scale the study of human planning 
Despite the ubiquity of sequential decision-making in naturalistic behavior, the study of the cog-
nitive mechanisms underlying such decisions has been primarily limited to relatively simple tasks. 
The constrained laboratory studies that we have covered thus far are designed to test theories 
about planning by eliciting specific behaviors that are amenable to precise analysis and modeling. 
However, the majority of these experiments are not intrinsically motivating for the participants, are 
learned in short periods of time, and result in small data sets. As such, they cannot capture the 
complexity of the real world and limit the potential to analyze sophisticated behavior. To circum-
vent this, computational methods derived from artificial intelligence have recently begun to be 
combined with tasks where evaluating every course of action is intractable and large-scale 
data sets. Scaling task complexity in this manner has the added benefit of allowing more complex 
models to make differentiable predictions. 

Signatures of complex planning 
In order to study complex planning, the ideal task needs to be difficult enough that good decisions 
require thinking multiple steps ahead while simultaneously preserving tractability for computational 
modeling. Furthermore, it should be novel, have simple rules, and be engaging in order to encour-
age learning and motivation. Considering these competing desiderata, 4-in-a-row, a variant of tic-
tac-toe in which two players alternate placing tokens on a 4 × 9 board with the objective of getting 
four tokens in a row in any orientation (Figure 2A), becomes an appealing candidate [ 49]. With ap-

proximately non-terminal states, 4-in-a-row has a state space complexity far beyond 
common cognitive science tasks, preventing any exhaustive search or brute force algorithms 
from being successful. Therefore, people as well as artificial agents who play the game need to ad-
dress the challenge of efficient search. This is just one example of how cognitive science as a field 
has started shifting away from the traditional, reductive approach to science towards using more 
complex tasks [50–52]. More complex tasks like 4-in-a-row, as well as those aimed at exploring 
the intersection between planning and behaviors such as navigation [53] and puzzle solving [54], 
may result in more precise descriptions of human cognition while planning. In turn, these descrip-
tions can be used to study biases apparent in psychopathology, for example, anxiety [55,56].

1 2 1016 

The computational cognitive model for human behavior in 4-in-a-row is adapted from the artificial 
intelligence literature, in particular, heuristic search. The model combines a heuristic evaluation 
function, which is a weighted linear combination of board features [57–59], with the construction 
of a decision tree via best-first search (Figure 2B). Best-first search iteratively expands nodes on 
the principal variation, or the sequence of actions that lead to the best outcome for both players 
given the current decision tree [60]. To allow the model to capture variability in human play and 
make human-like mistakes, Gaussian noise and feature dropout are added to the value function. 
For each move the model makes, it randomly drops some features from the heuristic function be-
fore it performs search. Such feature omissions can be interpreted as lapses of selective attention 
[61]. During search, the model also prunes the decision tree by removing branches with low heu-
ristic value. Fitting the model to individual people’s decisions requires a number of technical inno-
vations, including estimating the log probability of a move in a given board position with inverse
Trends in Cognitive Sciences, Month 2025, Vol. xx, No. xx 7
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Figure 2. Computational accounts of human planning in complex tasks. (A) Example board positions in 4-in-a-row (top) and chess (bottom) where the primary task 
for a decision-maker is to select which move to play. (B) Illustration of the computational cognitive model for 4-in-a-row [49]. The heuristic value function uses features which are 
intermediate patterns to winning the game highlighted by different color lines (left, top). Features with identical colors are constrained to the same weights, and the evaluation is 
a sum over the counts of these features. The model then conducts best-first search to build a decision tree where red nodes indicate the sequence of highest-value moves for 
both players (left, bottom). As an example, black is to move in the root position at the top of the decision tree (right). After expanding the root node with two candidate moves for 
black and evaluating the resulting positions using the heuristic function, the algorithm selects the highest value node (V the second iteration and expands it with two 
candidate moves for white. The algorithm evaluates the resulting positions, and backpropagates the lowest value ( ince white is the opponent. This means that the 
value in the red solid unbroken box replaces the one in the red broken box and the root node is updated to the highest value among its children (V he next iteration, 
the algorithm will again expand the child node with the highest value. (C) Illustration of a resource rational account of planning in chess [83 ]. In such a framework, the time 
individuals spend thinking should be sensitive to the benefits and costs of computation. Across board positions, the benefit of computation can be measured as the 
benefit of the deciding through a high computation, deep tree search (right) compared to a low computation, shallow tree search (left).

2 3) on 
V 0 3) s 

1 8). On t 
binomial sampling [62] and optimizing the log-likelihood function with Bayesian adaptive direct 
search [63]. 

With a process-level model that can accurately predict people’s move choices given a board 
state, it now becomes possible to make progress towards understanding human decision-
making in a complex planning task. A notable use case is to investigate how expert players differ 
from novices, resulting in robust evidence for increased planning depth with expertise [49]. Addi-
tionally, experts drop less board features and seem to memorize and reconstruct these features 
more accurately. Beyond the nature of expertise, 4-in-a-row can be leveraged to study the inter-
play between different reinforcement learning systems [64], comparisons between algorithms for 
human and machine planning [65], the continued development of model-based decision strate-
gies from childhood into adulthood [66], and planning impairments following ventromedial pre-
frontal cortex lesions [67].
8 Trends in Cognitive Sciences, Month 2025, Vol. xx, No. xx
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Given a baseline model in a complex task, a key issue that arises is improving the model to more 
accurately reflect human cognition. This is difficult because residuals between a model and be-
havior can often be noisy. Neural network techniques for guided model improvement have estab-
lished themselves as an emerging field to solve this problem, providing another connection with 
artificial intelligence. The core concept is to train a network to predict human behavior in a partic-
ular task, and then identify deviations between the network and a cognitive model’s predictions. 
This highlights situations in which the model requires novel mechanisms to explain human behav-
ior because the network can detect patterns in the data without requiring human understanding 
of these patterns a priori. This method was pioneered to discover algorithms underlying human 
decision-making [68,69] and categorization [70], while a related line of work has started to de-
velop recurrent neural networks for automated model discovery, thus far primarily in reinforce-
ment learning environments [71–73]. In the domain of planning, this has been utilized to extend 
the 4-in-a-row model with mechanisms ranging from a simple opening bias to adjustments re-
garding endgame decision-making [74]. In sum, 4-in-a-row and its model provide a framework 
under which various disparate research questions related to complex planning can be pursued. 

Machine and human planning in chess 
Chess presents an intriguing case study in complex decision-making and multi-step planning, and 
artificial intelligence has been able to make significant progress on developing methods for planning 
in combinatorial games. In 1950, Claude Shannon published a groundbreaking paper describing 
how a machine or computer could be designed to play a reasonable game of chess [75]. His algo-
rithm was based on a minimax procedure, which used an evaluation function of chess positions to 
select the best move for both players. Later, TD-Gammon was developed as the first program to 
play backgammon at human master level [76], and DeepBlue, the chess-playing computer that 
defeated reigning world champion Gary Kasparov, made use of alpha-beta pruning to decrease 
the number of nodes evaluated by its minimax algorithm [59]. This variation on heuristic search 
stops evaluating a move when at least one possibility has been found that proves the move to 
be worse than a previously examined move. Combining prior work on Monte Carlo tree search 
with artificial neural networks, AlphaGo became the first artificial agent to achieve superhuman per-
formance in Go with a series of stunning victories against world champion Lee Sedol [77]. The main 
innovation behind AlphaGo is that it selected moves using deep convolutional neural networks to 
both evaluate positions and sample actions. Additionally, instead of starting from random network 
weights, it used weights that were pretrained on human experts as a starting point, iterating on pre-
vious work that aimed to predict human moves in large Go databases [78,79]. 

AlphaGo was improved upon with variants that do not rely on human data [80] or domain-specific 
knowledge [81]. These represent state-of-the art advances in artificial intelligence, namely those 
that utilize self-play reinforcement learning to create computer agents that solve complex plan-
ning problems at a level beyond human capabilities. Similar cutting-edge methods have been 
used in the chess community to create publicly available chess engines such as Stockfish, and 
there have been attempts to build such engines that are optimized to match human play rather 
than performance. The most prominent example in this space is Maia, a customized version of 
AlphaZero that is trained on human chess games [82]. Maia is a unified modeling approach 
that captures human style and improvement across  different  skill  levels  rather  than  simply
matching aggregate human performance. Most important to this article, work in artificial intelli-
gence has provided a starting point for developing cognitive models of human chess play. By 
pointing to technical components such as algorithms for heuristic search and artificial neural net-
works as well as domain-specific findings such as knowledge acquisition and concept discovery, 
the literature on machine planning shows that developing computational accounts of planning in 
large state spaces is viable.
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Outstanding questions 
Do prior results from constrained 
laboratory studies replicate in 
unconstrained settings? Massive data 
sets and novel computational 
methods can be applied to naturalistic 
tasks in order to address this. 

How does planning interact with 
related fields in cognitive science, 
such as social cognition or working 
memory? For example, how do 
people use theory of mind to infer and 
incorporate the knowledge and 
strategies of others while thinking 
many steps ahead? What is the 
optimal algorithm under which to 
traverse a decision tree if people have 
a limited memory capacity rather than 
a simple global cost per computation? 

How can we construct process-level 
models of human planning that scale 
to the complexity of real-world 
environments? The computational 
cognitive model for 4-in-a-row is a 
start, but descriptive models that 
incorporate a wider variety of 
heuristics from the literature are 
needed. 

How general are the signatures of 
Despite impactful early work focused on expertise, the promise of chess as a model system for 
cognitive science has not yet been fulfilled due to its intractability for computational modeling 
(for a brief history of work on the psychology underlying chess play, see Box 2). However, two re-
cent developments have opened the door to more precise characterizations of human reasoning 
in chess. The popularity of online chess platforms has resulted in large-scale data sets, and mod-
ern chess engines provide better tools for developing detailed computational models of human 
decision-making and planning in this setting. One approach in this domain tested the hypothesis 
that people intelligently select the situations in which computational resources are spent [83]. 
Specifically, players seemed to spend more time thinking in board positions where planning 
was more beneficial, and this effect was greater in stronger players. Stockfish was used to 
estimate the benefit of applying planning computations for each board position occurring in 
12 5 million games from the Lichess database. The benefit of computation is then the increase 
in board position advantage, where players can make the maximum utility move with no planning 
or perform a planning computation which leads to a more accurate utility function and then select 
the new maximum utility move (Figure 2C). Meanwhile, other studies have used large-scale chess 
data sets to develop algorithms for calculating the riskiness of each move in a chess game [84], 
investigate the kinds of decisions where people are likely to make errors [85], and provide evi-
dence that people employ sophisticated learning algorithms [86]. This collection of results sug-
gest that it is possible to use quantitative methods to investigate human cognition in a planning 
paradigm as complex as chess. Thus, chess is now returning to the forefront of research in 
both cognitive science and artificial intelligence. 

Concluding remarks 
Within cognitive science, planning has traditionally been investigated with constrained tasks which 
encourage mental simulation, and normative approaches to how people conduct decision tree 
search have been formalized only recently. Similar problems have been tackled in artificial
Box 2. Chess: the ‘Drosophila of psychology’ 

The psychology of chess has invariably been a topic of much interest, and was referred to by Chase and Simon as the 
‘Drosophila of psychology’  –  a standard task environment around which knowledge and understanding can accumulate 
much like model organisms in biology. In 1946, de Groot proposed that strong chess players make moves by constructing 
a decision tree through an iterative deepening algorith m [102]. Experimentally, he presented players with preconfigured 
board positions and asked them to freely narrate their thought process while selecting a move. This showed no differences 
between stronger and weaker players. de Groot then conducted another experiment in which he instructed players to 
memorize and reconstruct chess positions, this time finding that stronger players were able to place more pieces correctly. 
In 1973, Chase and Simon added a control condition in which players were provided with scrambled and often illegal 
chess positions [103]. They found that players were better at reconstructing legal positions, leading to the hypothesis that 
people represent chess positions with an array of small patterns called chunks that allow them to compress information 
and avoid capacity limits. 

Since these experiments, the explanation for the superior performance of experts in chess has been hotly contested. One 
line of thought is that this difference is primarily due to better pattern recognition. To support this hypothesis, another rep-
lication of the reconstruction experiment analyzed which specific features of a chess position players remember incorrectly 
[104]. Other studies found no difference in search between experts and novices [105] or used eye movements and visual 
search tasks to further validate that experts possess chess-specific improvements in performance [106]. Conversely, 
some experiments have shown that deeper search is a key factor for improved play in chess. To selectively impair search 
while leaving pattern recognition abilities intact, players were asked to make moves under time pressure [107] or while 
counting backwards [108], which affected experts more than novices. There have also been studies that directly investi-
gated differences in search between experts and novices, finding that they do exist [109,110]. At least one intermediate 
proposal has been suggested, which is that improved search may be responsible for the development from novice to ex-
pert, but the step from expert to to Grandmaster level relies on pattern recognition [111]. 

However, developing computational cognitive models that accurately predict the moves of individual chess players has 
proven to be difficult [112,113]. Currently, there is still no process-level theory of human planning in chess. 

planning found in  combinatorial  
games? 4-in-a-row and chess are 
two tasks that require forward 
thinking, but there are countless other 
planning tasks that may or may not 
share similar underlying princip les.

Which constraints posed by the 
neuroscience of planning in animals 
apply to humans, and how do they 
modify the algorithms typically used to 
model planning? The study of multi-
step planning in the brain has made 
great progress towards linking various 
neural structures with behavior. 

How can additional tools from artificial 
intelligence be leveraged to better 
understand human planning? 
Heuristic search and artificial neural 
networks are examples of such 
instances, but contemporary methods 
such as large language models can 
also be used towards this goal.
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intelligence, with the goal of creating agents that can achieve superhuman performance in complex 
environments. To illustrate how these innovations can be used to better characterize the algorithms 
underlying human planning, we examined studies across two tasks where evaluating every course 
of action is intractable. The increasing availability of massive data sets and the development of 
novel computational methods will enable key questions to be addressed moving forward, in partic-
ular in understanding how people plan in complex environments (see Outstanding questions).
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